855 research outputs found

    A New Approach to LCA Evaluation of Lamb Meat Production in Two Different Breeding Systems inNorthern Italy

    Get PDF
    Lamb meat production provides vital landscape-management and ecosystem services; however, ruminant farming produces a considerable share of the world’s greenhouse gas emissions. To measure and compare the advantages and disadvantages of the intensification of livestock farming, an integrative analysis was conducted in this study by combining environmental impact analysis and animal welfare assessment. This approach is the first of its kind and is the innovative aspect of this paper. The methodology of Life Cycle Assessment (LCA) entails the holistic analysis of various impact categories and the associated emission quantities of products, services, and resources over their life cycle, including resource extraction and processing, production processes, transport, usage, and the end of life. The outlines of LCA are standardized in DIN EN ISO 14040/14044. To assess the environmental impacts of the production of lamb meat in northern Italy, two case studies were undertaken using the LCA software GaBi. The analysis is based on primary data from two sheep-breeding systems (semi-extensive and semi-intensive in alpine and continental bioregions, respectively) combined with inventory data from the GaBi database and data from the literature. The assessment was conducted for the functional unit of 1 kg of lamb meat and focuses on the impact categories global warming potential, acidification potential, and eutrophication potential. For an overall evaluation of the supply chain, we have also considered a parameter indicating animal welfare, in keeping with consumer concerns, employing an analysis of chronic stress as shown by cortisol accumulation. The goal is to derive models and recommendations for an efficient, more sustainable use of resources without compromising animal welfare, meat quality, and competitiveness. The aim of this study is to provide a standard for individualized sustainability analyses for European lamb production systems in the future. From the LCA perspective, the more intensive case-study farm showed a lower impact in global impact factors and a higher impact in local impact categories in comparison with the more extensively run farm that was studied. From the animal welfare perspective, lower amounts of the stress hormone cortisol were found on the extensively managed case-study far

    The ORC/Cdc6/MCM2-7 complex facilitates MCM2-7 dimerization during prereplicative complex formation.

    No full text
    The replicative mini-chromosome-maintenance 2-7 (MCM2-7) helicase is loaded in Saccharomyces cerevisiae and other eukaryotes as a head-to-head double-hexamer around origin DNA. At first, ORC/Cdc6 recruits with the help of Cdt1 a single MCM2-7 hexamer to form an 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex. Then, on ATP hydrolysis and Cdt1 release, the 'initial' complex is transformed into an ORC/Cdc6/MCM2-7 (OCM) complex. However, it remains unclear how the OCM is subsequently converted into a MCM2-7 double-hexamer. Through analysis of MCM2-7 hexamer-interface mutants we discovered a complex competent for MCM2-7 dimerization. We demonstrate that these MCM2-7 mutants arrest during prereplicative complex (pre-RC) assembly after OCM formation, but before MCM2-7 double-hexamer assembly. Remarkably, only the OCM complex, but not the 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex, is competent for MCM2-7 dimerization. The MCM2-7 dimer, in contrast to the MCM2-7 double-hexamer, interacts with ORC/Cdc6 and is salt-sensitive, classifying the arrested complex as a helicase-loading intermediate. Accordingly, we found that overexpression of the mutants cause cell-cycle arrest and dominant lethality. Our work identifies the OCM complex as competent for MCM2-7 dimerization, reveals MCM2-7 dimerization as a limiting step during pre-RC formation and defines critical mechanisms that explain how origins are licensed

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Cytokine Production but Lack of Proliferation in Peripheral Blood Mononuclear Cells from Chronic Chagas' Disease Cardiomyopathy Patients in Response to T. cruzi Ribosomal P Proteins

    Get PDF
    Background:Trypanosoma cruzi ribosomal P proteins, P2ÎČ and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with ÎČ1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals.Methodology/Principal findings:We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2ÎČ, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2ÎČ or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells.Conclusions/Significance:Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection.Fil: Longhi, Silvia Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Atienza, Augusto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos MejĂ­a"; ArgentinaFil: Perez Prados, Graciela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. FernĂĄndez"; ArgentinaFil: Buying, Alcinette. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Balouz, Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Buscaglia, Carlos Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Santos, Radleigh. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Tasso, Laura MĂłnica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Bonato, Ricardo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos MejĂ­a"; ArgentinaFil: Chiale, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos MejĂ­a"; ArgentinaFil: Pinilla, Clemencia. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Judkowski, Valeria A.. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Gomez, Karina Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentin

    Peripheral blood biomarkers in multiple sclerosis.

    Get PDF
    Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heteroge-neity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpre-dictable response to therapies. The major focus of the research on MS is the identification of biomarkers inbiologicalfluids, such as cerebrospinalfluid or blood, to guide patient management reliably. Because of the diffi-culties in obtaining spinalfluid samples and the necessity for lumbar puncture to make a diagnosis has reduced,the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However,currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkerscould radically alter the management of MS at critical phases of the disease spectrum, allowing for interventionstrategies that may prevent evolution to long-term neurological disability. This article provides an overview ofthis researchfield and focuses on recent advances in blood-based biomarker researc

    Reversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus

    Get PDF
    Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-ÎČ-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration
    • 

    corecore