683 research outputs found

    Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication

    Get PDF
    The Red-phytochromes and Blue-cryptochromes plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognised, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light-signalling cascades with the retrograde signals for the optimisation of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimising photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High-light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localised proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimisation of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals

    Identification of BBX proteins as rate-limiting cofactors of HY5

    Get PDF
    As a source of both energy and environmental information, monitoring of incoming light is crucial for plants to optimize growth throughout development1. Concordantly, the light signalling pathways in plants are highly integrated with numerous other regulatory pathways2,3. One of these signal integrators is the basic leucine zipper domain (bZIP) transcription factor LONG HYPOCOTYL 5 (HY5), which has a key role as a positive regulator of light signalling in plants4,5. Although HY5 is thought to act as a DNA-binding transcriptional regulator6,7, the lack of any apparent transactivation domain8 makes it unclear how HY5 is able to accomplish its many functions. Here we describe the identification of three B-box containing proteins (BBX20, BBX21 and BBX22) as essential partners for HY5-dependent modulation of hypocotyl elongation, anthocyanin accumulation and transcriptional regulation. The bbx20 bbx21 bbx22 (bbx202122) triple mutant mimics the phenotypes of hy5 in the light and its ability to suppress the cop1 mutant phenotype in darkness. Furthermore, 84% of genes that exhibit differential expression in bbx202122 are also regulated by HY5, and we provide evidence that HY5 requires the B-box proteins for transcriptional regulation. Finally, expression of a truncated dark-stable version of HY5 (HY5(ΔN77)) together with BBX21 mutated in its VP motif strongly promoted de-etiolation in dark-grown seedlings, demonstrating the functional interdependence of these factors. In sum, this work clarifies long-standing questions regarding HY5 action and provides an example of how a master regulator might gain both specificity and dynamicity through the obligate dependence of cofactors

    Shedding light on the methylerythritol phosphate (MEP)-pathway:long hypocotyl 5 (HY5)/phytochrome-interacting factors (PIFs) transcription factors modulating key limiting steps

    Get PDF
    The plastidial methylerythritol phosphate (MEP) pathway is an essential route for plants as the source of precursors for all plastidial isoprenoids, many of which are of medical and biotechnological importance. The MEP pathway is highly sensitive to environmental cues as many of these compounds are linked to photosynthesis and growth and light is one of the main regulatory factors. However, the mechanisms coordinating the MEP pathway with light cues are not fully understood. Here we demonstrate that by a differential direct transcriptional modulation, via the key-master integrators of light signal transduction HY5 and PIFs which target the genes that encode the rate-controlling DXS1, DXR and HDR enzymes, light imposes a direct, rapid and potentially multi-faceted response that leads to unique protein dynamics of this pathway, resulting in a significant difference in the protein levels. For DXS1, PIF1/HY5 act as a direct activation/suppression module. In contrast, DXR accumulation in response to light results from HY5 induction with minor contribution of de-repression by PIF1. Finally, HDR transcription increases in the light exclusively by suppression of the PIFs repression. This is an example of how light signaling components can differentially multi-target the initial steps of a pathway whose products branch downstream to all chloroplastic isoprenoids. These findings demonstrate the diversity and flexibility of light signaling components that optimize key biochemical pathways essential for plant growth. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Lt

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop (LRT2015), Seattle, March 201

    Previous SARS-CoV-2 Infection Increases B.1.1.7 Cross-Neutralization by Vaccinated Individuals

    Get PDF
    With the spread of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is a need to assess the protection conferred by both previous infections and current vaccination. Here we tested the neutralizing activity of infected and/or vaccinated individuals against pseudoviruses expressing the spike of the original SARS-CoV-2 isolate Wuhan-Hu-1 (WH1), the D614G mutant and the B.1.1.7 variant. Our data show that parameters of natural infection (time from infection and nature of the infecting variant) determined cross-neutralization. Uninfected vaccinees showed a small reduction in neutralization against the B.1.1.7 variant compared to both the WH1 strain and the D614G mutant. Interestingly, upon vaccination, previously infected individuals developed more robust neutralizing responses against B.1.1.7, suggesting that vaccines can boost the neutralization breadth conferred by natural infection

    Circadian waves of transcriptional repression shape PIF-regulated photoperiod-responsive growth in a<i>rabidopsis</i>

    Get PDF
    Plants coordinate their growth and development with the environment through integration of circadian clock and photosensory pathways. In Arabidopsis thaliana, rhythmic hypocotyl elongation in short days (SD) is enhanced at dawn by the basic-helix-loop-helix (bHLH) transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) directly inducing expression of growth-related genes [1-6]. PIFs accumulate progressively during the night and are targeted for degradation by active phytochromes in the light, when growth is reduced. Although PIF proteins are also detected during the day hours [7-10], their growth-promoting activity is inhibited through unknown mechanisms. Recently, the core clock components and transcriptional repressors PSEUDO-RESPONSE REGULATORS PRR9/7/5 [11, 12], negative regulators of hypocotyl elongation [13, 14], were described to associate to G boxes [15], the DNA motifs recognized by the PIFs [16, 17], suggesting that PRR and PIF function might converge antagonistically to regulate growth. Here we report that PRR9/7/5 and PIFs physically interact and bind to the same promoter region of pre-dawn-phased, growth-related genes, and we identify the transcription factor CDF5 [18, 19] as target of this interplay. In SD, CDF5 expression is sequentially repressed from morning to dusk by PRRs and induced pre-dawn by PIFs. Consequently, CDF5 accumulates specifically at dawn, when it induces cell elongation. Our findings provide a framework for recent TIMING OF CAB EXPRESSION 1 (TOC1/PRR1) data [5, 20] and reveal that the long described circadian morning-to-midnight waves of the PRR transcriptional repressors (PRR9, PRR7, PRR5, and TOC1) [21] jointly gate PIF activity to dawn to prevent overgrowth through sequential regulation of common PIF-PRR target genes such as CDF5

    The importance of conserving Mexico's tomato agrodiversity to research plant biochemistry under different climates

    Get PDF
    Tomatoes are important to agriculture, human nutrition and cuisines globally. However, many commercial tomato varieties, including the saladette that dominates the North American market, are highly sensitive to environmental changes that impact yields and critical biochemical pathways including carotenoids and isoprenoids that influence nutritional content and flavour. We highlight the potential of tomato agrodiversity, notably its genetic diversity, as an undervalued research tool for understanding environmental regulation of plant biochemistry under different climates. Yet, tomato genetic diversity in Mexico, the major centre of tomato domestication, is not formally described or protected. We propose that transdisciplinary efforts are essential to identify, conserve and research these globally significant genetic resources

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
    corecore