343 research outputs found

    Camera-based Prospective Motion Correction in Paediatric Epilepsy Patients Enables EEG-fMRI Localization Even in High-motion States

    Get PDF
    BACKGROUND: EEG-fMRI is a useful additional test to localize the epileptogenic zone (EZ) particularly in MRI negative cases. However subject motion presents a particular challenge owing to its large effects on both MRI and EEG signal. Traditionally it is assumed that prospective motion correction (PMC) of fMRI precludes EEG artifact correction. METHODS: Children undergoing presurgical assessment at Great Ormond Street Hospital were included into the study. PMC of fMRI was done using a commercial system with a Moiré Phase Tracking marker and MR-compatible camera. For retrospective EEG correction both a standard and a motion educated EEG artefact correction (REEGMAS) were compared to each other. RESULTS: Ten children underwent simultaneous EEG-fMRI. Overall head movement was high (mean RMS velocity < 1.5 mm/s) and showed high inter- and intra-individual variability. Comparing motion measured by the PMC camera and the (uncorrected residual) motion detected by realignment of fMRI images, there was a five-fold reduction in motion from its prospective correction. Retrospective EEG correction using both standard approaches and REEGMAS allowed the visualization and identification of physiological noise and epileptiform discharges. Seven of 10 children had significant maps, which were concordant with the clinical EZ hypothesis in 6 of these 7. CONCLUSION: To our knowledge this is the first application of camera-based PMC for MRI in a pediatric clinical setting. Despite large amount of movement PMC in combination with retrospective EEG correction recovered data and obtained clinically meaningful results during high levels of subject motion. Practical limitations may currently limit the widespread use of this technology

    Neuronal networks in West syndrome as revealed by source analysis and renormalized partial directed coherence

    Get PDF
    West syndrome is a severe epileptic encephalopathy of infancy with a poor developmental outcome. This syndrome is associated with the pathognomonic EEG feature of hypsarrhythmia. The aim of the study was to describe neuronal networks underlying hypsarrhythmia using the source analysis method (dynamic imaging of coherent sources or DICS) which represents an inverse solution algorithm in the frequency domain. In order to investigate the interaction within the detected network, a renormalized partial directed coherence (RPDC) method was also applied as a measure of the directionality of information flow between the source signals. Both DICS and RPDC were performed for EEG delta activity (1–4 Hz) in eight patients with West syndrome and in eight patients with partial epilepsies (control group). The brain area with the strongest power in the given frequency range was defined as the reference region. The coherence between this reference region and the entire brain was computed using DICS. After that, the RPDC was applied to the source signals estimated by DICS. The results of electrical source imaging were compared to results of a previous EEG-fMRI study which had been carried out using the same cohort of patients. As revealed by DICS, delta activity in hypsarrhythmia was associated with coherent sources in the occipital cortex (main source) as well as the parietal cortex, putamen, caudate nucleus and brainstem. In patients with partial epilepsies, delta activity could be attributed to sources in the occipital, parietal and sensory-motor cortex. In West syndrome, RPDC showed the strongest and most significant direction of ascending information flow from the brainstem towards the putamen and cerebral cortex. The neuronal network underlying hypsarrhythmia in this study resembles the network which was described in previous EEG-fMRI and PET studies with involvement of the brainstem, putamen and cortical regions in the generation of hypsarrhythmia. The RPDC suggests that brainstem could have a key role in the pathogenesis of West syndrome. This study supports the theory that hypsarrhythmia results from ascending brainstem pathways that project widely to basal ganglia and cerebral cortex

    Neuronal networks in children with continuous spikes and waves during slow sleep

    Get PDF
    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations correspond to both initiation and propagation pathways. The deactivations in structures of the default mode network are consistent with the concept of epileptiform activity impacting on normal brain function by inducing repetitive interruptions of neurophysiological functio

    The role of humidity and UV-C emission in the inactivation of B. subtilis spores during atmospheric-pressure dielectric barrier discharge treatment

    Get PDF
    Experiments are performed to assess the inactivation of Bacillus subtilis spores using a non-thermal atmospheric-pressure dielectric barrier discharge. The plasma source used in this study is mounted inside a vacuum vessel and operated in controlled gas mixtures. In this context, spore inactivation is measured under varying nitrogen/oxygen and humidity content and compared to spore inactivation using ambient air. Operating the dielectric barrier discharge in a sealed vessel offers the ability to distinguish between possible spore inactivation mechanisms since different process gas mixtures lead to the formation of distinct reactive species. The UV irradiance and the ozone density within the plasma volume are determined applying spectroscopic diagnostics with neither found to fully correlate with spore inactivation. It is found that spore inactivation is most strongly correlated with the humidity content in the feed gas, implying that reactive species formed, either directly or indirectly, from water molecules are strong mediators of spore inactivation

    Lesion detection in epilepsy surgery: Lessons from a prospective evaluation of a machine learning algorithm

    Get PDF
    AIM: To evaluate a lesion detection algorithm designed to detect focal cortical dysplasia (FCD) in children undergoing stereoelectroencephalography (SEEG) as part of their presurgical evaluation for drug-resistant epilepsy. METHOD: This was a prospective, single-arm, interventional study (Idea, Development, Exploration, Assessment, and Long-Term Follow-Up phase 1/2a). After routine SEEG planning, structural magnetic resonance imaging sequences were run through an FCD lesion detection algorithm to identify putative clusters. If the top three clusters were not already sampled, up to three additional SEEG electrodes were added. The primary outcome measure was the proportion of patients who had additional electrode contacts in the SEEG-defined seizure-onset zone (SOZ). RESULTS: Twenty patients (median age 12 years, range 4-18 years) were enrolled, one of whom did not undergo SEEG. Additional electrode contacts were part of the SOZ in 1 out of 19 patients while 3 out of 19 patients had clusters that were part of the SOZ but they were already implanted. A total of 16 additional electrodes were implanted in nine patients and there were no adverse events from the additional electrodes. INTERPRETATION: We demonstrate early-stage prospective clinical validation of a machine learning lesion detection algorithm used to aid the identification of the SOZ in children undergoing SEEG. We share key lessons learnt from this evaluation and emphasize the importance of robust prospective evaluation before routine clinical adoption of such algorithms

    Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma

    Get PDF
    Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore