3,413 research outputs found
A Second Order Penalized Direct Forcing for Hybrid Cartesian/Immersed Boundary Flow Simulations
International audienceFlows around complex stationary/moving solids take an important place in life-science context or in many engineering applications. Usually, these problems are solved by body-fitted approaches on unstructured meshes with boundary conditions directly imposed on the domain boundary. Another way is using immersed boundary (IB) techniques: the physical domain is immersed in a fixed fictitious one of simpler geometry on Cartesian grids. It allows to use efficient, fast and accurate numerical methods avoiding the tedious task of re-meshing in case of time varying geometry. In contrast, one needs specific methods to take into account the IB conditions (IBC). Here, we propose a second order penalized direct forcing method for unsteady incompressible flows with Dirichlet's IBC. It consists in adding a penalized forcing term to the initial problem, applied only on Cartesian nodes near the IB, in order to bring back the variable to the imposed one. Regarding Navier-Stokes solvers using a projection scheme, the forcing term is distributed both in the velocity prediction and in the correction equations. It leads to a natural way to prescribe the pressure boundary conditions around obstacles. Numerical experiments, performed for laminar flows around static/moving solids, assess the validity and illustrate the ability of our method, showing in particular a quadratic convergence rate
The high-intensity hyperon beam at CERN
A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to
experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup
allowed rapid changeover between hyperon and conventional hadron beam
configurations. The beam provided a Sigma-flux of 1.4 x 10^5 per burst at mean
momenta between 330 and 345 Gev/c, produced by about 3 x 10^10 protons of 450
GeV/c . At the experiment target the beam had a Sigma-/pi- ratio close to 0.4
and a size of 1.6 x 3.7 cm^2. The beam particle trajectories and their momenta
were measured with a scintillating fibre hodoscope in the beam channel and a
silicon microstrip detector at the exit of the channel. A fast transition
radiation detector was used to identify the pion component of the beam.Comment: 20 pages, 13 figures. Submitted to Nucl. Instr. Meth.
Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity
Evaluating the economic impact of screening and treatment for depression in the workplace
Depression is the most common psychiatric illness and cause of disability, and associated with durable impacts on productivity and represents one of the major causes of workplace absenteeism and presenteeism. Few studies, however, examine the economic impact of treatment of depression in the workplace, particularly from the perspective of the employer. We estimated the relative costeffectiveness of treatment for employees with depression in the workplace. We used a decisionanalytic model to estimate the relative cost-effectiveness of (i) psychotherapy, (ii) pharmacotherapy and (iii) combination of psychotherapy and pharmacotherapy and whether they reduce sickness, absenteeism and presenteeism for people with depression. Costs and savings to the employer were also estimated, and policy recommendations made about how best to translate this evidence into practice. Both pharmacotherapy treatment and psychotherapy treatment were found to be costsaving from the perspective of the employer. Psychotherapy was found to be the most cost-effective option with an incremental cost-effectiveness ratio of âŹ22,225. This study provides evidence that screening and treatment for depression in the workplace is cost-effective and represents a worthwhile investment from the business perspective
Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method
This paper discusses hadron energy reconstruction for the ATLAS barrel
prototype combined calorimeter (consisting of a lead-liquid argon
electromagnetic part and an iron-scintillator hadronic part) in the framework
of the non-parametrical method. The non-parametrical method utilizes only the
known ratios and the electron calibration constants and does not require
the determination of any parameters by a minimization technique. Thus, this
technique lends itself to an easy use in a first level trigger. The
reconstructed mean values of the hadron energies are within of the
true values and the fractional energy resolution is . The value of the ratio
obtained for the electromagnetic compartment of the combined calorimeter is
and agrees with the prediction that for this
electromagnetic calorimeter. Results of a study of the longitudinal hadronic
shower development are also presented. The data have been taken in the H8 beam
line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM
Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fbâ1 of sâ=7TeV proton-proton collisions
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fbâ1 of pp collision data at sâ=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from â„6 to â„9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ