207 research outputs found

    Update statistics in conservative parallel discrete event simulations of asynchronous systems

    Full text link
    We model the performance of an ideal closed chain of L processing elements that work in parallel in an asynchronous manner. Their state updates follow a generic conservative algorithm. The conservative update rule determines the growth of a virtual time surface. The physics of this growth is reflected in the utilization (the fraction of working processors) and in the interface width. We show that it is possible to nake an explicit connection between the utilization and the macroscopic structure of the virtual time interface. We exploit this connection to derive the theoretical probability distribution of updates in the system within an approximate model. It follows that the theoretical lower bound for the computational speed-up is s=(L+1)/4 for L>3. Our approach uses simple statistics to count distinct surface configuration classes consistent with the model growth rule. It enables one to compute analytically microscopic properties of an interface, which are unavailable by continuum methods.Comment: 15 pages, 12 figure

    Stroke Incidence and Survival in American Indians, Blacks, and Whites: The Strong Heart Study and Atherosclerosis Risk in Communities Study

    Get PDF
    Background: American Indians (AIs) have high stroke morbidity and mortality. We compared stroke incidence and mortality in AIs, blacks, and whites. Methods and Results: Pooled data from 2 cardiovascular disease cohort studies included 3182 AIs from the SHS (Strong Heart Study), aged 45 to 74 years at baseline (1988–1990) and 3765 blacks and 10 413 whites from the ARIC (Atherosclerosis Risk in Communities) Study, aged 45 to 64 years at baseline (1987–1989). Stroke surveillance was based on self-report, hospital records, and death certificates. We estimated hazard ratios for incident stroke (ischemic and hemorrhagic combined) through 2008, stratified by sex and birth-year tertile, and relative risk for poststroke mortality. Incident strokes numbered 282 for AIs, 416 for blacks, and 613 for whites. For women and men, stroke incidence among AIs was similar to or lower than blacks and higher than whites. Covariate adjustment resulted in lower hazard ratios for most comparisons, but results for these models were not always statistically significant. After covariate adjustment, AI women and men had higher 30-day poststroke mortality than blacks (relative risk=2.1 [95% CI=1.0, 3.2] and 2.2 [95% CI=1.3, 3.1], respectively), and whites (relative risk=1.6 [95% CI=0.8, 2.5] and 1.7 [95% CI=1.1, 2.4]), and higher 1-year mortality (relative risk range=1.3–1.5 for all comparisons). Conclusions: Stroke incidence in AIs was lower than for blacks and higher than for whites; differences were larger for blacks and smaller for whites after covariate adjustment. Poststroke mortality was higher in AIs than blacks and whites

    Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP

    Get PDF
    The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation–response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible and machine learning approaches where they are needed, e.g., for faster and better subgrid-scale parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that strive towards an optimal trade-off between the resolution, complexity, and number of simulations and their length and, thereby, help to advance the understanding of climate change and its impacts

    Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Get PDF
    CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let

    High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe

    Full text link
    We report on the realization of a high quality distributed Bragg reflector with both high and low refractive index layers lattice matched to ZnTe. Our structure is grown by molecular beam epitaxy and is based on binary compounds only. The high refractive index layer is made of ZnTe, while the low index material is made of a short period triple superlattice containing MgSe, MgTe, and ZnTe. The high refractive index step of Delta_n=0.5 in the structure results in a broad stopband and the reflectivity coefficient exceeding 99% for only 15 Bragg pairs.Comment: 4 pages, 3 figure

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore