28 research outputs found

    Low Frequency Vibration Approach for Assessing Performance of Wood Floor Systems1

    Get PDF
    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to effectively assess the structural performance of wood floors as component systems. Twelve wood floors were constructed with solid sawn wood joists in the laboratory and tested with both vibration and static load methods. The results indicated that the forced vibration method was capable of measuring the fundamental natural frequency (bending mode) of the wood floors investigated. An analytical model derived from the flexural beam theory was found to fit the physics of the floor structures and can be used to correlate natural frequency to section modulus (EI product) of the floor systems

    Nondestructive Evaluation of Standing Trees With a Stress Wave Method

    Get PDF
    The primary objective of this study was to investigate the usefulness of a stress wave technique for evaluating wood strength and stiffness of young-growth western hemlock and Sitka spruce in standing trees. A secondary objective was to determine if the effects of silvicultural practices on wood quality can be identified using this technique. Stress wave measurements were conducted on 168 young-growth western hemlock and Sitka spruce trees. After in situ measurements, a 0.61-m-long bole section in the test span was taken from 56 felled trees to obtain small, clear wood specimens. Stress wave and static bending tests were then performed on these specimens to determine strength and stiffness. Results of this study indicate that in situ stress wave measurements could provide relatively accurate and reliable information that would enable nondestructive evaluation of wood properties in standing trees. The mean values of stress wave speed and dynamic modulus of elasticity for trees agreed with those determined from small, clear wood specimens. Statistical regression analyses revealed good correlations between stress wave properties of trees and static bending properties of small, clear wood specimens obtained from the trees. Regression models showed statistical significance at the 0.01 confidence level. Results of this study also demonstrate that the effect of silvicultural practices on wood properties can be identified with the stress wave properties of trees. This indicates that this nondestructive stress wave technique can be used to track property changes in trees and help determine how forests could be managed to meet desired wood and fiber qualities

    System for and method of performing evaluation techniques on a log or round timber

    Get PDF
    A system for and method of evaluating a log. The system includes an analysis module having at least one input terminal connectable to the at least one input device. The at least one input terminal is operable to receive at least one signal representing at least one measured property of the log and at least one determined parameter of the log determined in response to an energy being applied to the log. The analysis module further includes a processor coupled to the at least one input terminal. The processor determines a predictive modulus of elasticity (MOE) of the log based at least in part on the at least one measured property and the at least one sensed parameter. The analysis module also includes an output terminal coupled to the processor and connectable to an output device. The output terminal transmits a third signal representing the predictive MOE.https://digitalcommons.mtu.edu/patents/1042/thumbnail.jp

    Genome Sequencing Shows that European Isolates of Francisella tularensis Subspecies tularensis Are Almost Identical to US Laboratory Strain Schu S4

    Get PDF
    BACKGROUND: Francisella tularensis causes tularaemia, a life-threatening zoonosis, and has potential as a biowarfare agent. F. tularensis subsp. tularensis, which causes the most severe form of tularaemia, is usually confined to North America. However, a handful of isolates from this subspecies was obtained in the 1980s from ticks and mites from Slovakia and Austria. Our aim was to uncover the origins of these enigmatic European isolates. METHODOLOGY/PRINCIPAL FINDINGS: We determined the complete genome sequence of FSC198, a European isolate of F. tularensis subsp. tularensis, by whole-genome shotgun sequencing and compared it to that of the North American laboratory strain Schu S4. Apparent differences between the two genomes were resolved by re-sequencing discrepant loci in both strains. We found that the genome of FSC198 is almost identical to that of Schu S4, with only eight SNPs and three VNTR differences between the two sequences. Sequencing of these loci in two other European isolates of F. tularensis subsp. tularensis confirmed that all three European isolates are also closely related to, but distinct from Schu S4. CONCLUSIONS/SIGNIFICANCE: The data presented here suggest that the Schu S4 laboratory strain is the most likely source of the European isolates of F. tularensis subsp. tularensis and indicate that anthropogenic activities, such as movement of strains or animal vectors, account for the presence of these isolates in Europe. Given the highly pathogenic nature of this subspecies, the possibility that it has become established wild in the heartland of Europe carries significant public health implications

    Ecological traits predict population changes in moths

    Get PDF
    © 2019 The Authors Understanding the ecological traits which predispose species to local or global extinction allows for more effective pre-emptive conservation management interventions. Insect population declines are a major facet of the global biodiversity crisis, yet even in Europe they remain poorly understood. Here we identify traits linked to population trends in ‘common and widespread’ UK moths. Population trend data from the Rothamsted Research Insect Survey spanning 40 years was subject to classification and regression models to identify common traits among species experiencing a significant change in occurrence. Our final model had an accuracy of 76% and managed to predict declining species on 90% of occasions, but was less successful with increasing species. By far the most powerful predictor associated for declines was moth wingspan with large species declining more frequently. Preference for woody or herbaceous larval food sources, nocturnal photoperiod activity, and richness of habitats occupied also proved to be significantly associated with decline. Our results suggest that ecological traits can be reliably used to predict declines in moths, and that this model could be used for Data Deficient species, of which there are many

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Invading and expanding : range dynamics and ecological consequences of the Greater White-Toothed Shrew (Crocidura russula) invasion in Ireland

    Get PDF
    Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus), previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island
    corecore