
LOW FREQUENCY VIBRATION APPROACH FOR ASSESSING
PERFORMANCE OF WOOD FLOOR SYSTEMS1

Xiping Wang†
Research Associate

Natural Resources Research Institute
University of Minnesota Duluth

and
USDA Forest Service, Forest Products Laboratory

Madison, WI 53726-2398

Robert J. Ross†
Project Leader

USDA Forest Service, Forest Products Laboratory
Madison, WI 53726-2398

Michael O. Hunt†
Professor

Department of Forestry and Natural Resources
Purdue University

West Lafayette, IN 47907

John R. Erickson†
Research Scientist

and

John W. Forsman
Assistant Research Scientist

School of Forest Resources and Environmental Science
Michigan Technological University

Houghton, MI 49931

(Received February 2004)

ABSTRACT

The primary means of inspecting buildings and other structures is to evaluate each structure member
individually. This is a time-consuming and expensive process, particularly if sheathing or other covering
materials must be removed to access the structural members. The objective of this study was to determine
if a low frequency vibration method could be used to effectively assess the structural performance of wood
floors as component systems. Twelve wood floors were constructed with solid sawn wood joists in the
laboratory and tested with both vibration and static load methods. The results indicated that the forced
vibration method was capable of measuring the fundamental natural frequency (bending mode) of the
wood floors investigated. An analytical model derived from the flexural beam theory was found to fit the
physics of the floor structures and can be used to correlate natural frequency to section modulus (EI
product) of the floor systems.
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INTRODUCTION

Existing wood structures require rigorous and
timely inspections to ensure their safety and
structural performance. In general, structural in-
spection requires that some indicating param-
eters be monitored that are sensitive to the dam-
age/deterioration mechanism in question. Cur-
rent inspection methods for wood structures are
limited to evaluating each structural member in-
dividually, which is a labor-intensive, time-
consuming process. For in situ inspection of
wood structures, a more efficient strategy would
be to screen whole structural systems or sub-
systems in terms of their overall performance
and serviceability. Examining the dynamic re-
sponse of a structural system might provide an
alternative way to gain insight into the ongoing
performance of the system. Deterioration caused
by any organism or any type of mechanical dam-
age in structure reduces the strength and stiff-
ness of the materials and thus could affect the
dynamic behavior of the system. If, for example,
one structural system or section of the system
was found to respond to dynamic loads in a man-
ner significantly different from that of other
similar systems or the surrounding sections of
the system, a more extensive inspection of that
system or section would be warranted. Based on
this conceptual strategy, we began to investigate
the possibility of using a low frequency vibra-
tion approach for assessing the performance of
wood structural systems by measuring the fun-
damental natural frequency (bending mode) and
damping ratio of the entire system.

In a previous study (Soltis et al. 2002), we
conducted a pilot investigation on three labora-
tory-constructed wood floors and addressed
three practical problems on the use of vibration
methods for floor inspection. The first problem
was related to the best way to obtain a good
signal response when inspecting a floor with
limited accessibility. We found that the location
of the response measuring device and forcing
function do not significantly affect frequency.
Both free and forced vibration gave acceptable
results. Free vibration has the advantages of be-
ing easy to apply and giving both frequency and

damping data. Its disadvantage is that the re-
sponse is sometimes weak, which could cause
problems in collecting vibration data. Forced vi-
bration enables a stronger response by use of a
larger forcing function. It also appears to give
more consistent results. Its disadvantage is that
no damping data can be obtained directly.

The second problem was whether vibration
testing can be used to detect joist decay. The
results have indicated a decrease in natural fre-
quency and increase in damping ratio propor-
tionate to the amount of decay, as simulated by
progressively cutting the ends of three joists
(each laboratory floor had five joists). Small
changes in frequency and damping ratio were
observed with the loss of one or two joist ends,
but greater change was observed with the loss of
three joist ends. This implies that the system
effect of a floor with bridging and decking may
make it difficult to detect decay in only one or
two joists.

The third problem was to inspect a floor with
superimposed loads that are not easily removed.
We concluded that the additional mass of the
loads should be included in frequency prediction
calculations, but the locations of the loads have
only a small effect on natural frequency.

The results from the previous study are lim-
ited in scope. The objectives of the study re-
ported here were to extend the investigation of
vibration methods to a series of floors that have
a wide range of spans and joist sizes and to
develop an analytical relationship between natu-
ral frequency and stiffness (EI product) of floor
systems.

ANALYTICAL MODEL

An analytical model is used to relate the stiff-
ness properties of the floor to its fundamental
natural frequency for the purpose of inspection.
Continuous system theory was chosen as the
means for developing a theoretical vibration
model based on the global physical properties of
a system.

The floor systems in existing buildings are
typically constructed of wood joists, cross bridg-
ing, and decking (Fig. 1). In previous studies
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(Ross et al. 2002; Soltis et al. 2002), we found
that the stiffness of the joists predominates over
the transverse floor sheathing because the thick-
ness of the decking board is very small com-
pared to the height of the joists. In addition, the
deck is not continuous; and the deck boards are
nailed perpendicular to the joists, reducing the
stiffness that would be provided in the case of
simple floor bending. The cross bridging also
does not contribute to the bending stiffness of
the floor because it mainly provides lateral brac-
ing to the joists. Thus, we assumed that a floor
system behaves predominately like a beam with
resisting moments in the transverse direction.
The total mass of the deck and cross bridging is
distributed into the assumed mass of the joists.

The partial differential equation (PDE) gov-
erning the transverse vibration for a simple flex-
ure beam is given in Eq. (1):

�2u

�t2
+ �EI

�A� �4u

�x4 = 0 (1)

where
EI is stiffness (modulus of elasticity E × mo-

ment of inertia of I) of the beam,
� mass density of the beam, and
A cross-sectional area of the beam.

The solution of this partial differential equa-
tion is generally accomplished by means of the
separation of variables and is largely dependent
on the boundary conditions at each end of the
beam. Blevins (1993) has shown that a general
form for the natural frequency for any mode (i)
can be derived, as given in Eq. (2):

fi =
�i

2

2�L2 �EI

�A�
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where
fi is natural frequency,
�i a factor dependent on the boundary condi-

tions of the beam, and
L beam span.

Consider the vibration of a beam supported at
the ends. If vibration is restricted to the first
mode, Eq. (2) can be rearranged to obtain an
expression for stiffness (EI):

EI =
f 2WL3

kg
(3)

where f is the fundamental natural frequency
(first bending mode), k is defined as a system
parameter dependent on the boundary conditions
of the beam (pin–pin support: k � 2.46; fix–fix
support, k � 12.68), W is weight of the beam
(uniformly distributed), and g is acceleration due
to gravity.

EXPERIMENTAL PROCEDURE

Laboratory floor systems

Twelve wood floor systems were tested under
laboratory conditions at Michigan Technological
University (designated as MTU floors). The
floors were constructed with nominal 2- by 4-in.
(standard 38- by 89-mm), nominal 2- by 6-in.
(standard 38- by 140-mm), and nominal 2- by
10-in. (standard 38- by 235-mm) joists. Joist ma-
terials included three wood species (jack pine,

FIG. 1. Structural details of typical wood floor system.
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spruce–pine-fir, and white pine), and their
strength properties ranged from low to high in
terms of E-rating values. Each floor was con-
structed of five joists spaced 12 in. (305 mm) on
center. Spans of 91, 113, and 137 in. (2.32, 2.87,
and 3.48 m) were used. The jack pine solid sawn
joists were cut from fresh and dead (contained
decay) trees. White pine joists were from 100-
year-old salvaged materials. The combinations
of different joist size and floor span, plus high
and low E materials, provided a wide range of
dynamic and static performance. The joists were
laterally braced by cross bridging at 1/3 and 2/3
of the span. The floor decking was transverse 1-
by 4-in. (25- by 102-mm) spruce–pine–fir (SPF)
boards fastened by dry wall screws.

Boundary conditions

Theoretically, a simply supported end condi-
tion provides no moment resistance, while a
fixed end condition provides infinite capacity to
carry moment. The true boundary conditions in
real floor structures cannot be absolutely known
from visual inspection of the floor or floor plans.
However, laboratory floor systems can provide
an opportunity to investigate how the floor re-
sponse under a forcing function is affected by
different end conditions, from nearly free to the
condition that approximates a “real world” floor.

In this study, floors were tested at five differ-
ent end conditions. First, each floor was sup-
ported by two steel pipes at the ends to approxi-
mate a simply supported boundary condition.
This was necessary because the proposed ana-
lytical model needs to be validated with experi-
mental data under an ideal boundary condition
before it can be applied. Then, each floor was
tested while the ends were supported with alu-
minum bars (simulation of hard supports), de-
cayed jack pine boards (simulation of soft sup-
ports), and decayed jack pine boards with a layer
of neoprene material on top of the boards (simu-
lation of super-soft supports). These conditions
were examined because they are often encoun-
tered in some floor structures where one end of
the joists rests on a wooden or steel girder in-
stead of a masonry wall. The soft supports were

used to mimic floor joist ends resting on decayed
wooden sill plates. Finally, the floors were tested
with the ends of joists embedded in prefabri-
cated masonry pockets, which simulates the end
conditions of typical floor structures in existing
buildings.

Vibration tests

All laboratory-constructed floor systems were
subjected to forced vibration testing. The forced
vibration approach employed is a purely time
domain method as described in previous work
(Soltis et al. 2002). We used this method as our
main approach because it could enable a stron-
ger response by use of a larger forcing function,
which is desired when real floor structures are
inspected. The other advantage of this forced
vibration method is that it eliminates the need
for modal analysis and is easy to perform in
realworld applications.

Figure 2 shows the experimental setup for
conducting forced vibration testing on labora-
tory floor systems. The vibration was imposed
by a motor with an eccentric rotating mass at-
tached to the floor decking. Placing the motor at
the quarter-point of span over the center joist
ensured that the simple bending mode of floor
vibration would be excited. The response to vi-
bration was measured under the center joist at
midspan using a linear variable differential
transducer (LVDT). The time–deflection signal
was recorded by an oscilloscope. To locate the
fundamental natural frequency in bending mode,

FIG. 2. Experimental setup for forced vibration testing
of wood floor system.

WOOD AND FIBER SCIENCE, JULY 2005, V. 37(3)374



the motor speed was slowly increased from rest
until the first local maximum displacement re-
sponse was located. The period of vibration was
then estimated from 10 cycles of this steady-
state motion.

The drawback of the forced vibration ap-
proach is the assumption that the first maximum
acceleration found corresponds to the simple
bending mode of the structure. A parallel re-
search on timber bridges by Morison et al.
(2002, 2003) showed that the frequency mea-
sured by the forced vibration method might cor-
respond to a mode other than the bending mode
in some cases. An error could occur when other
modes (typically torsion) were misidentified as
the bending mode. To verify the results from
forced vibration testing, free vibration testing
was also performed on each floor system to mea-
sure the fundamental natural frequency in bend-
ing mode. Free vibration was initiated by impact
from a hammer, and the fundamental natural fre-
quency was determined as the inverse of the
period measured from the time-domain signal.

Load–deflection analysis

To correlate the natural frequency of floor
systems to a measure of structural performance,
the floors were also evaluated by load–deflec-

tion analysis, which provided a more direct mea-
sure of floor stiffness, the EI product. The static
load testing was done by placing 236 lb (107 kg)
of line load in five increments across the struc-
ture at midspan and measuring the deflection
response of the center joist, again at midspan,
with a dial indicator. Since the load was distrib-
uted evenly across the width of the floor, the EI
product was therefore estimated directly from
the load–deflection data based on the beam
bending equation

EI = �P

�
��L3

48� (4)

where P is static load (lb), � midspan deflection
(in.), and L floor span (in.).

RESULTS AND DISCUSSION

Table 1 summarizes the physical characteris-
tics and measured natural frequencies of the
floor systems. The frequency data of floor 5
were not obtained because of the possible high
frequency of this floor and the speed limitation
of the motor. Floor 5 was therefore excluded
from data analysis.

A comparison of measured natural frequen-
cies from free vibration and forced vibration
showed that the results from the two methods

TABLE 1. Physical characteristics and measured natural frequencies of laboratory floor systems.a

Floor no.
Joist sizeb

(in.)
Span
(in.)

Weight
(lb)

Measured natural frequency (Hz)

Pinned support Masonry pocket support

Forced Free
Difference

(%) Forced Free
Difference

(%)

1 2 by 4 91.25 108 21.0 21.2 −0.94 26.7 28.7 −6.97
2 2 by 4 91.25 110 20.0 20.5 −2.44 21.3 22.3 −4.48
3 2 by 4 91.25 111 16.2 16.5 −1.82 21.7 22.7 −4.41
4 2 by 4 113 140 15.3 15.6 −1.92 20.7 22.0 −5.91
5 2 by 10 113 223 — — — — — —
6 2 by 4 113 146 13.8 14.0 −1.43 15.5 16.4 −5.49
7 2 by 4 11.3 126 11.6 11.8 −1.69 14.5 15.4 −5.84
8 2 by 6 113 163 23.8 24.5 −2.86 24.2 24.8 −2.42
9 2 by 4 113 136 11.3 11.4 −0.88 13.8 14.1 −2.13

10 2 by 4 137 171 10.6 10.7 −0.93 14.1 14.9 −5.37
11 2 by 4 137 168 10.3 10.4 −0.96 12.7 12.9 −1.55
12 2 by 4 137 157 8.0 8.1 −1.23 10.0 10.5 −4.76

a One inch � 25.4 mm. 1 lb � 0.454 kg.
b Nominal dimensions.
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matched quite closely, differing less than 3% for
the simple support condition and less than 7%
for the masonry support condition. This indi-
cated that the lowest bending mode of each
floor’s vibration was properly captured by the
forced vibration method.

Figure 3 shows the results of a floor system
(floor 4) tested at various end support condi-
tions. Examination of this figure revealed that
the natural frequency from forced vibration was
about the same for the pinned, hard, soft, and
super-soft end support conditions. The hardness
of end-supporting materials apparently had little
or no effect on the natural frequency of the floor.
In contrast, the masonry pocket end supports
yielded a higher frequency than did the pinned
end supports because of the possible constraints
added to the ends of the joists. The increase in
measured frequency for the masonry pocket sup-
ports was from 20% to 35% for most floor sys-
tems tested except floors 2 and 7, which had an
increase in frequency of less than 10%. This
difference in frequency increase was mainly a
result of the different constraint forces existing
on each floor. This indicated that, even with the
same end support structure, the end conditions
could vary from floor to floor as a result of
construction variability.

It should be mentioned that the end support
conditions simulated in this experimental study

are still limited compared to the situations that
might occur in real-world floor structures. For
example, in contemporary floor systems, one
support condition that could affect the vibra-
tional response of the structure is when one end
of the floor joists is supported on a flexural beam
or girder. This beam support could cause a sig-
nificant drop in the fundamental frequency of
the floor system. The use of soft or super-soft
support will not simulate the flexible condition
that a beam would provide. The effect of flexible
support conditions on the vibrational response of
floor systems should be carefully examined in
future studies.

The proposed model (Eq. (3)) represents a
possible relationship between natural frequency
and section modulus (EI product) of a floor
structure. This model needs to be examined with
experimental data for its validity. Figure 4
shows theoretical predictions for two extreme
supporting conditions (free– free and fixed–
fixed) and experimental data obtained under ma-
sonry pocket end conditions. Here, EI/WL3 was
treated as the independent variable and natural
frequency as the dependent variable. The natural
frequency was predicted over a range of EI/WL3

assuming both simply supported and fixed
boundary conditions. The measured results un-

FIG. 3. Natural frequency of floor system (floor 4) mea-
sured at various end support conditions.

FIG. 4. Theoretical predictions for simple support and
fixed boundary conditions and experimental data obtained
under masonry pocket end conditions.
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der masonry pocket end conditions were then
superimposed on the same set of axes. We ob-
served that measured results lie close to the
simple support boundary predictions. A closer
examination of Fig. 4 indicated that the mea-
sured data of most floor systems actually fell
between simple support and rigidly fixed bound-
ary conditions, with a distinct bias toward the
simply supported prediction. Only two floors
(floors 2 and 8) fell a little below the simple
supported prediction.

This result essentially suggests that the theo-
retical model generated from the simple beam
theory fits the physics of wood floor structures
and is therefore a valid representation of the re-
lationship between natural frequency and EI
product of floor systems. However, for this
model to be useful, an overall system parameter
(k) that best describes the boundary conditions
of the floor systems investigated should be de-
termined from experimental data.

The analytical model in Eq. (3) was applied to
the measured EI product and natural frequency
for the floors tested under masonry pocket end
conditions. A system parameter (k) was there-
fore estimated for each floor. These results were
then averaged to provide an overall system pa-
rameter that best describes the entire population.
The average system parameter was determined
to be k � 2.65, with a standard deviation of
0.533.

With newly developed system parameter k,
the model in Eq. (3) could be used to predict the
natural frequency of a floor using measured EI
product. Figure 5 illustrates the relationship be-
tween predicted frequency from the model and
measured frequency from forced vibration. Re-
gression analysis of data revealed a strong linear
correlation (R2 � 0.93) between predicted fre-
quencies and measured values. This again sup-
ports the previous observation that the theoreti-
cal model is applicable to wood floor structures.

From the perspective of in-place inspection, a
possible implementation scheme is to use the
measured natural frequency to predict EI prod-
uct for each floor system. To investigate the er-
ror of the model on stiffness prediction, we cal-
culated EI product for each floor using measured

frequency and the overall system parameter (k
� 2.65) and made a comparison against the
measured EI product. The result (Fig. 6) shows
quite a bit of variation, from 4% minimum to
37% maximum difference (in absolute value).
We speculate that this variation is primarily
caused by the composite action in floor systems
and the natural variation of floor construction.
For example, the composite action between the
sheathing and the joists (both across the width of

FIG. 5. Relationship between predicted and measured
frequencies of floor systems under masonry pocket end con-
ditions.

FIG. 6. Predicted EI product and percentage of differ-
ence with measured EI products of floor systems.
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the floor and along the length of a single joist) is
very variable due to the discontinuity of lumber
sheathing and the type of connection used. The
fixity or the constraint of end supports, on the
other hand, may also vary from floor to floor due
to construction variability. Another contributing
factor could be the small sample size. If more
floors had been available, more representative
average system parameters could have been ob-
tained.

CONCLUSIONS

The forced vibration method was used to mea-
sure the fundamental natural frequency of labo-
ratory-constructed floor systems at various end
support conditions. An analytical model based
on beam theory was proposed to represent the
relationship between natural frequency and EI
product of the floors. From the results of this
laboratory investigation, the following conclu-
sions can be drawn:

● The forced vibration method is capable of
measuring the natural frequency (bending
mode) of wood floor structures.

● The hardness of end-supporting materials has
little or no effect on the natural frequency of
a floor. In contrast, the masonry pocket end
supports, which simulate the end conditions

of typical floor structures in existing build-
ings, yield a higher frequency than do pinned
end supports.

● The analytical model generated from the
simple beam theory fits the physics of the
floor structures investigated and has a poten-
tial to be used to correlate the natural fre-
quency to EI product. However, for the model
to be applied to floor inspection, it needs to be
calibrated with field data from in-place floor
systems.
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