26 research outputs found

    Effect of perinatal adversity on structural connectivity of the developing brain

    Get PDF
    Globally, preterm birth (defined as birth at <37 weeks of gestation) affects around 11% of deliveries and it is closely associated with cerebral palsy, cognitive impairments and neuropsychiatric diseases in later life. Magnetic Resonance Imaging (MRI) has utility for measuring different properties of the brain during the lifespan. Specially, diffusion MRI has been used in the neonatal period to quantify the effect of preterm birth on white matter structure, which enables inference about brain development and injury. By combining information from both structural and diffusion MRI, is it possible to calculate structural connectivity of the brain. This involves calculating a model of the brain as a network to extract features of interest. The process starts by defining a series of nodes (anatomical regions) and edges (connections between two anatomical regions). Once the network is created, different types of analysis can be performed to find features of interest, thereby allowing group wise comparisons. The main frameworks/tools designed to construct the brain connectome have been developed and tested in the adult human brain. There are several differences between the adult and the neonatal brain: marked variation in head size and shape, maturational processes leading to changes in signal intensity profiles, relatively lower spatial resolution, and lower contrast between tissue classes in the T1 weighted image. All of these issues make the standard processes to construct the brain connectome very challenging to apply in the neonatal population. Several groups have studied the neonatal structural connectivity proposing several alternatives to overcome these limitations. The aim of this thesis was to optimise the different steps involved in connectome analysis for neonatal data. First, to provide accurate parcellation of the cortex a new atlas was created based on a control population of term infants; this was achieved by propagating the atlas from an adult atlas through intermediate childhood spatio-temporal atlases using image registration. After this the advanced anatomically-constrained tractography framework was adapted for the neonatal population, refined using software tools for skull-stripping, tissue segmentation and parcellation specially designed and tested for the neonatal brain. Finally, the method was used to test the effect of early nutrition, specifically breast milk exposure, on structural connectivity in preterm infants. We found that infants with higher exposure to breastmilk in the weeks after preterm birth had improved structural connectivity of developing networks and greater fractional anisotropy in major white matter fasciculi. These data also show that the benefits are dose dependent with higher exposure correlating with increased white matter connectivity. In conclusion, structural connectivity is a robust method to investigate the developing human brain. We propose an optimised framework for the neonatal brain, designed for our data and using tools developed for the neonatal brain, and apply it to test the effect of breastmilk exposure on preterm infants

    FSL Diffusion Preprocessing

    No full text
    Preprocessing pipeline for diffusion MRI data using the FSL software suite

    fsl_first

    No full text
    FIRST is a model-based segmentation and registration tool, based on a Bayesian model of shape and appearance for subcortical structures

    FSL Diffusion Preprocessing

    No full text
    Preprocessing pipeline for diffusion MRI using the FSL suite

    fsl_bet

    No full text
    Automated brain extraction tool for FS

    fslstats

    No full text
    Descriptor of fslstats from the FSL toolbox. Computes various statistics on nifti images

    BIDS App - FSL Diffusion Preprocessing

    No full text
    Preprocessing pipeline for diffusion MRI data using the FSL software suite

    fsl_fast

    No full text
    FAST (FMRIB's Automated Segmentation Tool) segments a 3D image of the brain into different tissue types (Grey Matter, White Matter, CSF, etc.), whilst also correcting for spatial intensity variations (also known as bias field or RF inhomogeneities), via a hidden Markov random field model and an associated EM algorithm. Note that the alternative priors option is not supported at this time
    corecore