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Abstract 

Globally, preterm birth (defined as birth at <37 weeks of gestation) affects 

around 11% of deliveries and it is closely associated with cerebral palsy, 

cognitive impairments and neuropsychiatric diseases in later life.  

Magnetic Resonance Imaging (MRI) has utility for measuring different 

properties of the brain during the lifespan. Specially, diffusion MRI has been 

used in the neonatal period to quantify the effect of preterm birth on white 

matter structure, which enables inference about brain development and 

injury.  

By combining information from both structural and diffusion MRI, is it possible 

to calculate structural connectivity of the brain. This involves calculating a 

model of the brain as a network to extract features of interest. The process 

starts by defining a series of nodes (anatomical regions) and edges 

(connections between two anatomical regions). Once the network is created, 

different types of analysis can be performed to find features of interest, 

thereby allowing group wise comparisons. 

The main frameworks/tools designed to construct the brain connectome have 

been developed and tested in the adult human brain. There are several 

differences between the adult and the neonatal brain: marked variation in 

head size and shape, maturational processes leading to changes in signal 

intensity profiles, relatively lower spatial resolution, and lower contrast 

between tissue classes in the T1 weighted image. All of these issues make 

the standard processes to construct the brain connectome very challenging 
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to apply in the neonatal population. Several groups have studied the neonatal 

structural connectivity proposing several alternatives to overcome these 

limitations. 

The aim of this thesis was to optimise the different steps involved in 

connectome analysis for neonatal data. First, to provide accurate parcellation 

of the cortex a new atlas was created based on a control population of term 

infants; this was achieved by propagating the atlas from an adult atlas 

through intermediate childhood spatio-temporal atlases using image 

registration. After this the advanced anatomically-constrained tractography 

framework was adapted for the neonatal population, refined using software 

tools for skull-stripping, tissue segmentation and parcellation specially 

designed and tested for the neonatal brain. Finally, the method was used to 

test the effect of early nutrition, specifically breast milk exposure, on 

structural connectivity in preterm infants. We found that infants with higher 

exposure to breastmilk in the weeks after preterm birth had improved 

structural connectivity of developing networks and greater fractional 

anisotropy in major white matter fasciculi. These data also show that the 

benefits are dose dependent with higher exposure correlating with increased 

white matter connectivity.  

In conclusion, structural connectivity is a robust method to investigate the 

developing human brain. We propose an optimised framework for the 

neonatal brain, designed for our data and using tools developed for the 

neonatal brain, and apply it to test the effect of breastmilk exposure on 

preterm infants.  
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Lay summary 

Globally, preterm birth (defined as birth at <37 weeks of gestation) affects 

around 11% of deliveries and it is closely associated with cerebral palsy, 

cognitive impairments and neuropsychiatric diseases in later life.  

Due to new technological advances in magnetic resonance imaging (MRI) it 

is possible to map the so called “brain connectome”. That is a map of the 

connections of the brain, resulting in a matrix which represents the 

connectivity between different regions of the brain.  

To calculate the “brain connectome”, two different MRI acquisitions are 

involved. Firstly, structural MRI which allows us to identify different cortical 

regions of interest (ROIs), and secondly, diffusion MRI, which is used to map 

the brain’s white matter and establish the connections between the different 

cortical ROIs.  

In the last few years researchers have made significant improvements in 

calculating the “brain connectome”. However, almost all the methods have 

been designed/tested in the adult human brain, and therefore are not suitable 

for neonatal infants due to several anatomical differences between the adult 

and neonatal brain. 

The aim of this thesis was to optimise the different steps involved in 

calculating the “brain connectome” to allow its use in the neonatal brain. First, 

a new atlas was created based on a healthy newborn population for accurate 

anatomic labelling of different cortical brain regions. After this, the process of 
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mapping the white matter connections was optimized by adapting state of the 

art frameworks designed for the adult human brain to the neonatal brain. 

Finally, the optimised method was used to test the effect that breast milk may 

have on the “brain connectome” of a group of preterm infants. We found that 

infants with higher exposure to breastmilk had improved structural 

connectivity of developing networks, and these benefits were dose 

dependent with higher exposure correlating with increased white matter 

integrity.  

In conclusion, structural connectivity is a powerful tool to investigate the 

developing human brain. We propose an optimised framework for the 

neonatal brain and apply it to test the effect of the breastmilk exposure in 

preterm infants. 
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1. General Introduction 
 

1.1. Preterm birth 

A preterm birth is defined as a birth at less than 37 weeks gestational age 

(GA) and globally it is estimated to affect around 11% of deliveries every year 

(1). Prematurity is the leading cause of death in children under the age of 5 

years and almost 1 million children die each year due to the complications of 

a preterm birth (2, 3). In almost all countries with reliable data, preterm birth 

rates are increasing (1, 4).  

A preterm birth can be initiated by multiple mechanisms (5). There are 

several risk factors associated with preterm birth, including maternal diabetes 

and high blood pressure, being pregnant with more than one baby, tobacco 

smoking, a number of vaginal infections, psychological stress, socio-

economic deprivation, being very overweight or underweight before 

pregnancy, being pregnant with a baby resulting from in vitro fertilization,  

getting pregnant too soon after having a baby or drinking alcohol or using 

recreational drugs during the pregnancy (5-7). In addition, studies have 

identified a multitude of underlying biological pathways and possible genetic 

and epigenetic mechanisms that influence birth timing and baby size (8-12). 

However, effective prediction of a preterm birth remains difficult, relying on a 

combination of clinical history, cervical length measurements and 

biochemical markers such as foetal fibronectin, thereby limiting the 

effectiveness of targeted interventional strategies (13, 14). Unless required 
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for other medical reasons, it is recommended not to induce labour before 39 

weeks. 

 

1.1.1. Neurodevelopmental Outcome after Preterm Birth  

Over 50% of all infants whose GA is less than twenty-six weeks suffer 

developmental impairment in some form, including behavioural and 

emotional disturbance, autistic spectrum disorder, attention deficit 

hyperactivity disorder and psychiatric disease (15-19). Premature infants are 

at a greater risk of cerebral palsy (CP), cognitive impairment and 

neuropsychiatric disease later in life (20, 21). These problems persist into 

adulthood and are greater the earlier the baby is born (22-24). 

The lower the gestational age, the proportionally higher the risk of developing 

CP, which is diagnosed in 20% of premature survivors of less than 26 weeks 

GA by the age of 6 years (25, 26). To decrease the risk of brain injury and 

improve outcomes, different medical treatments have been proven, for 

example, antenatal steroids, antenatal magnesium sulphate, avoidance of 

postnatal transfer, reducing postnatal sepsis and optimising nutrition (27-30). 

For instance, early malnutrition influences neurodevelopment and may 

modify the risk of brain injury associated with a preterm birth. Optimised 

protein and energy intake in the first 28 days is associated with increased 

brain growth and fractional anisotropy (FA) (31-33). It has also been shown 

that breastfeeding, when compared with formula feeding, is associated with 
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increased performance in intelligence tests amongst the general population, 

and this effect may be enhanced in low birthweight infants (34-38). 

However, CP is not the only adverse consequence that can result from a 

premature birth: fine motor and coordination impairments are also quite 

widespread in such populations (39-41). Although the personal impact of 

these conditions is lower than that of CP, they are likely to contribute to a 

poor performance in early education, which has been frequently reported with 

subjects from this cohort (40).  

Wood et al. proved using the Bayley Scales of Infant Development that 

extremely preterm subjects performed significantly worse in mental and 

psychomotor development experiments compared to term-born control 

subjects, both tested at 30 months of age (19). It has been found that 

children born extremely preterm with a mild neurological impairment, 

performed worse than expected at 6 years of age in comparison to control 

subjects in experiments which tested their mental abilities in processing 

sequential and simultaneous information (21, 25).  

The previously mentioned neurocognitive outcomes are connected with a 

variety of disorders that affect domains such as language, learning, attention, 

memory and behaviour (18, 25, 42, 43).  

A high prevalence of sensory morbidity (44, 45) and mild visual or hearing 

impairment (25, 46) in preterm compared with term groups is also worth 

mentioning. A lucid summary extracted from “Preterm Birth: Causes, 

Consequences, and Prevention.” by Behrman, R.E. and Butler, A.S. (2007) 
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can be found in Table 1.1. The table describes how each study population 

was defined using birth weight or gestational age, or both. 

Table 1.1: Sensory Impairments in Children Born Preterm 

 

Percentage 

Severe 

Impairment 

Study 
Year of 

Birth 

No. of 

Subjects 

Age 

(yr) 

Gestational 

Age (wk) 

Birth 

Weight (g) 
Visual Hearing 

Vohr et al., 2005 

(26) 
1997–1998 

910 
1.8 

22–26  1 1.8 

512 27–32  0.4 1.8 

Hintz et al., 2005 

(47) 

1993–1996 355 
1.8 <25 

 2.3 4.3 

1996–1999 467  1.1 2.6 

Marlow et al., 2005 

(25) 
1995 241 6 <26  2 6 

Jacobs et al., 2000 

(48) 
1990–1994 470 1-2 23–26  2 4 

Lefebvre et al., 

1996 (49) 
1987–1992 217 1.5 23–28  0.5 0.5 

Wilson-Costello et 

al., 2005 (50)  
1990–1998 

145 

1.8  

<750 1 10 

272 750–999 1 6 

682 <1,000 1 7 

Mercier et al., 2005 

(51)  
1998–2001 2446 2  <1,000 1.4 2.1 

Mikkola et al., 2005 

(52) 
1996–1997 173 5  <1,000 9 4 

Hack et al., 2005*  1992–1995 200 8  <1,000 0 2 

Hack et al., 2000 

(53) 
1992–1995 221 1.8 

 
<1,000 1 9 

Hansen and 

Greisen, 2004 (54)  
1994–1995 183 5 <28 <1,000 3.3 0 

Doyle et al., 2005 

(55) 
1991–1992 224 8 

 
<1,000 1.3 1.3 

* Two percent of the subjects required hearing aids and 14 percent had hearing 

impairments. 
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There is also a higher risk of developing behavioural problems when a child 

is born premature. A common behavioural problem is, for instance, attention 

deficit disorder (18, 56). Furthermore, there is evidence of a link between an 

increased incidence of psychiatric symptoms that may be the basis of certain 

disorders (such as schizophrenia or autism), and preterm teenagers (57).  In 

addition, deficits in cognition that manifest during childhood appear to prevail 

much later into adult life (58, 59).  

Finally, other important somatic impairments such as long-term respiratory 

impairment (60) or increases in cardiovascular risk (61), are common in 

preterm populations, but it is difficult to quantify their impact in infancy and 

early childhood, although these may become more important in later life (62). 

1.2. Preterm Brain Injury 

A large number of infants who are born prematurely suffer from brain injury, 

which often underlies neurologic development in the ways that have been 

described in the previous subsection. Hence, it is of a great importance to 

public health to investigate these kinds of injuries in order to characterise 

atypical brain development and to enable investigation of causal pathways to 

injury and early detection of children at risk of long term impairments. 

Preterm brain injury can be classified as haemorrhagic (Germinal Matrix 

Hemorrhage-Intraventricular Hemorrhage [GMH-IVH]), or ischaemic 

(periventricular leukomalacia [PVL]).  

 



 

28 

 

1.2.1. Germinal Matrix Hemorrhage-Intraventricular Hemorrhage 

 

During the first 48 hours of life, following rupture of the germinal matrix 

vasculature, there is a high chance of developing GMH-IVH (63-65). GMH 

usually presents as an asymmetric lesion, involving bleeding from the thin-

walled veins within the germinal matrix. If this bleeding occurs in the 

ventricular system, GMH evolves into IVH. This bleeding may cause 

obstruction of the medullary veins, resulting in venous hemorrhage and 

coagulation necrosis of deep periventricular white matter (WM), resulting in a 

haemorrhagic parenchymal infarction (HPI) (Figure 1.1.).  

GMH-IVH and HPI may result in a residual porencephalic cyst near the 

ventricular or posthemorrhagic hydrocephalus, or both.  

1.2.2. Periventricular leukomalacia  

It is generally thought that premature brain injuries consist mainly of PVL, 

which is a cerebral white matter injury (WMI) (66). Recent works have also 

revealed that PVL is commonly accompanied by neuronal or axonal diseases 

that affect the cerebral WM, basal ganglia, cerebral cortex, thalamus, brain 

stem and cerebellum (67). Thus, there is a specific term for when PVL and 

neuronal/axonal disease appear together; they are generally referred as 

“encephalopathy of prematurity”.  

PVL has two neuropathological components: the focal periventricular necrotic 

component and diffuse gliosis in the surrounding cerebral WM (Figure 1.1.). 
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Cystic lesions secondary to necrotic foci in the WM characterize the first 

component.  

It is extremely hard to detect neurodevelopmental impairment due to PVL in 

newborns and children aged under 6 months. The reason is that PVL shares 

many symptoms with other medical conditions so infants do not clearly show 

the signs of impairment, thus, it can take a long time to reach the correct 

diagnosis, missing a window of opportunity for early interventions to improve 

outcomes. However, there are some signs that could be sought in order to 

speed up the PVL identification process such as: vision and/or hearing 

problems, difficulties with coordination and intellectual or cognitive 

impairment (59, 67). Neonatal imaging may provide a tool for early 

identification, taking into account, that MRI predicts adverse motor outcomes 

slightly better than ultrasound, but both methods are insensitive and neither 

predicts cognitive problems (68). 

1.2.2.1.  PVL: Focal brain injury 

The focal component of PVL consists of necrosis of the deep periventricular 

white mater, resulting in a loss of all cellular elements in the area. The 

necrotic foci can be separated into two types depending on the size of the 

lesion and the different histopathological evolutions: macroscopic (necrosis > 

1 mm which evolves over several weeks into a cyst) and microscopic 

(necrosis ≤ 1 mm which evolves over several weeks into glial scars) (67).  

The nomenclature to differentiate PVL subtypes depends on necrotic foci 

size but not on the diffuse component. For instance, the macroscopic focal 
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necrotic component of PVL with diffuse gliosis is referred to as “cystic PVL” 

(c-PVL). This is a serious injury, but currently its incidence is quite low thanks 

to improved neonatal intensive care: less than 3% of the infants who suffer 

very low birth weight (VLBW, less than 1500g) experience it, which accounts 

for the smallest portion of the PVL population (67, 69, 70). 

On the other hand, microscopic focal necroses are called “non cystic PVL” 

and they occur much more frequently. This type of injury evolves over 

several weeks, turning into glial scar, which is very difficult to visualize by 

neuroimaging. The percentage of VLBW preterm babies presenting with this 

injury is between 20 and 50%. 

A common error is to refer to non-cystic PVL as “diffuse PVL” with the 

purpose of differentiating it from c-PVL, because both c-PVL and non-cystic 

PVL have one diffuse component and large or small cysts (71). 

1.2.2.2. PVL: Diffuse brain injury 

The diffuse component of PVL is characterised by an initial decrease in the 

premyelinating oligodendrocytes (pre-OLs), astrogliosis and microgliosis (72-

74). The timing of the appearance and spatial distribution of susceptible OL 

lineage cells coincides with the magnitude and distribution of acute ischemic 

injury in several experimental models of WMI, hence its name. The changes 

in white matter FA with brain maturation observed via MRI correspond 

closely with maturation of the OL lineage (75). 
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Although the decrease of the pre-OLs is one of the causes of the diffuse 

PVL, recent findings support an alternative mechanism where myelination 

disturbances involve a potentially reversible process linked to arrested pre-

OL maturation. Hence, chronic diffuse WMI is characterized by an aberrant 

response to acute injury, which involves a disrupted regeneration and repair 

process, whereas pre-OLs are regenerated but remain dysmature (75). 

The decrease in pre-OLs is associated with an increase in oligodendroglial 

progenitors (OPCs), a mechanism that has been observed in several animal 

models (76). However, when the injury is due to PVL, OPCs do not seem to 

differentiate correctly into mature oligodentrocytes (the myelin producers), 

which are often missing their characteristic projections (or processes). As a 

result, hypomyelination and ventriculomegaly can occur later in the life of the 

subject (76-79). 

The cause for the disturbance in the OPCs maturation is still unknown, but it 

has been widely documented in an animal model of PVL (80, 81). It was 

found that the progenitor cells are vulnerable to hypoxic-ischaemic events, 

which are very frequently seen in premature infants.  

The halting of preOL maturation may adversely influence subsequent white 

matter maturation. Recent studies support the hypothesis that viable OLs and 

myelination are critical for axon survival (82). Serial neuroimaging studies are 

needed to better define the progression of WMI in at risk human preterm 

infants (83-85). 
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Figure 1.1: Anatomical structures and sites of pathology in the developing brain. The 

normal anatomical structures at term and the different sites of injury in the preterm brain: 

diffuse cerebral WMI in the future central cerebral WM, focal (cystic) PVL in the deep 

periventricular WM, GMH-IVH at the wall of the LV, and PVHI that may be associated with 

germinal matrix haemorrhage, are shown from left to right (LV = lateral ventricle; C = 

caudate, P = putamen, GP = globus pallidus). From “Diffuse White Matter Injury and 

Neurologic Outcomes of Infants Born Very Preterm in the 1990s” by Brunssen and Harry. 

2007. Journal of Obsteric, Gynecologic & Neonatal Nursing (86) and “Neurobiology of 

Periventricular Leukomalacia in the Premature Infant” by Volpe. 2001. Pediatric Research 

(66). 

 

 

1.2.3. Detection and grading of the preterm brain injury 

The most common way to diagnose preterm brain injury is by cranial 

ultrasonography (cUS) at the cotside, or by MRI. In cUS examinations, 

echogenicity is measured, that is the extent to which different surfaces reflect 

ultrasound waves. Higher echogenicity means that the surface of interest 

reflects a big portion of the incident sound waves, which enables anatomic 

inference. 
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PVL often presents as areas of increased periventricular echogenicity (PVE) 

relative to the signal from the choroid plexus, when normally the echogenicity 

of the WM should be lower than that of the choroid plexus. It is often 

presumed that diffuse periventricular hyperechogenicity is correlated with the 

diffuse neuropathological component of PVL; however the basis and extent 

of this correspondence are uncertain (87).  

Using the most common classification, PVL is graded into four main types 

(88, 89): 

 Grade I: Non-cystic PVL as PVE present for more than seven days, 

seen in the coronal and sagittal plane, being as or more echogenic 

than the choroid plexus. 

 Grade II: PVE evolving into focal cystic lesions. 

 Grade III: PVE evolving into extensive cystic lesions. 

 Grade IV: Diffuse echogenicity evolving into periventricular and 

subcortical cystic lesions. 

For the GMH, the most commonly used system is the grading system 

proposed by Burstein, Papile et al. (90) that includes the following grades: 

 Grade I: Restricted to the subependymal region/germinal matrix which 

is seen in the caudothalamic groove. 

 Grade II: Extension into normal sized ventricles and typically filling 

less than 50% of the volume of the ventricle. 

 Grade III: Extension into dilated ventricles. 
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 Grade IV: Grade III with parenchymal haemorrhage. 

Nowadays with the increase of MRI in neonatal practice, it is possible to 

detect brain injury with better definition than with cUS. Moreover, MRI can 

reveal subtle alterations not visible to ultrasound. For example, it has been 

found that MRI detects GMH-IVH with double the sensitivity as with cUS (91). 

The signal of the IVH evolves from isointense to slightly hypointense on T1-

weighted (T1w) MRI and to marked hypointense on T2-weighted (T2w) MRI. 

Following this, the intensity of the signal starts to increase, first on T1w then 

on T2w MRI. Over the next months, the hemorrhage becomes hypointense 

on images obtained with both sequences (92). 

In PVL, the most common MRI-visible abnormality at term-equivalent age is 

diffuse and excessively high signal intensity on T2w images (93, 94). In 

addition, a diffuse abnormal signal intensity can also be seen as a loss in 

T1w signal and is commonly associated with ventricular dilatation and 

increased extracerebral cerebrospinal fluid (CSF) which may represent the 

diffuse component of PVL (95). PVL also shows abnormalities in the diffuse 

MRI signal and in other water diffusion parameters identified from diffusion 

MRI, for example the apparent diffusion coefficient (ADC) (96, 97). Although 

the neurobiological basis of abnormal signal intensities is unclear, it is related 

to cognitive and behavioural impairments, and the alteration of the mean 

diffusivity (MD) of the WM in the developing brain, and has been associated 

with short term measures of neurodevelopmental outcome in infants without 

focal cerebral lesions (98). These observations are indicative of subtle 
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microstructural alterations which may reflect a disturbance of normal 

maturational processes with long-term consequences (66, 99). 

A summary of the neuroimaging findings for the different brain injuries can be 

seen in Table 1.2 (adapted from “Clinical neuroimaging in the preterm infant: 

Diagnosis and prognosis” by Hinojosa-Rodriguez, M. et al. 2017. 

Neuroimage: Clinical  (71)). 

1.2.4. Outcome of the preterm brain injury 

GMH and low-grade IVH may resolve by term and do not necessarily 

increase the risk of an adverse outcome, but moderate to severe IVH (grades 

III and IV) is associated with high incidences of neurodevelopmental 

disabilities in surviving infants, such as CP, cognitive, behavioral and visual 

problems (100-103), although the nature and extent of this disability varies 

according to the size and location of the haemorrhage (104, 105). 

The outcome of the babies with PVL depends on the severity and extension 

of the injury; going from spastic diplegia, slight developmental delays and 

deficits in posture, vision systems and motor skills in the patients with minor 

injuries (106-108), to more extensive signs of brain damage and eventually 

development of CP (106, 108) or epilepsy (109) in patients with severe PVL. 

The severity of the CP is related to the level of injury. Those infants with 

severe PVL have high levels of muscle tone and frequent seizures. When 

they grow, they may be quadriplegic, exhibiting a loss of function or paralysis 

of all limbs. 

https://en.wikipedia.org/wiki/Spastic_diplegia
https://en.wikipedia.org/wiki/Quadriplegia
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Infants with severe PVL typically begin to exhibit different signs of CP. Some 

of the abnormal neurological signs can be seen from 36 weeks conceptual 

age, but is necessary to wait until between six to nine months of age to try to 

evaluate the definitive signs (110). 

A summary of the major clinical outcomes for the different preterm brain 

injuries can be seen in Table 1.1 (from “Clinical neuroimaging in the preterm 

infant: Diagnosis and prognosis” by Hinojosa-Rodriguez, M. et al. 2017. 

Neuroimage: Clinical  (71)) 

Table 1.2: Summary of the different preterm brain injuries 

Preterm brain 
injury detected 

by MRI 

Neuropathological 
findings 

Main clinical outcomes 

Cystic white 
matter 

abnormalities 
(WMA) 

Cystic PVL. Often 
bilateral cysts 

Cerebral palsy with 
diplegia or quadriplegia 

Porencephalic cyst 
secondary to 
periventricular 

hemorrhagic infarction. 
Often unilateral 

Location-dependent. 
Motor cortex: hemiplegic 

cerebral palsy 

Diffuse WMA 

Diffuse component of 
cystic PVL (moderate-

to-severe WMA) 

Cognitive 
impairment/behavioral 

problems 

Non cystic PVL (mild-
to-moderate WMA) 

Cognitive 
impairment/behavioral 

problems 

Diffuse white matter 
gliosis (normal-to-mild 

WMA) 
Unknown 

Germinal matrix 
hemorrhage - 

intraventricular 
hemorrhage 

Breaking of the 
germinal matrix vessels 

Depends on the location 
and severity 

Grade III/Periventricular 
hemorrhagic infarction: 

cerebral palsy, cognitive, 
behavioral and visual 

problems 
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1.3. Magnetic Resonance Imaging  

MRI is a non-invasive imaging technique used in medicine to form pictures of 

the anatomy and of the physiological processes of the body in both health 

and disease.  

MRI is based on the principle that certain atomic nuclei absorb and emit radio 

frequency energy when placed in an external magnetic field. In clinical and 

research MRI, hydrogen atoms are most often used to generate a detectable 

radio-frequency signal that is received by coils in close proximity to the 

anatomy being examined. The main reason to use hydrogen atoms is 

because the average adult human body consists of ~65% water molecules. 

The magnetic field aligns the spins of the atoms mainly in two directions, 

parallel and antiparallel. The intensity of the field and the spin of the atom 

establish the frequency of the magnetic resonance of the nuclei, and also the 

proportion of atoms in each one of the states. 

This proportion obeys the Maxwell-Boltzmann law, which states that at body 

temperature, in a field of 1.0 Tesla, both states are nearly equal; only a small 

excess (~3 x 10-6) of spins can be expected to be found in the lower energy 

(spin-up) state. The very large number of atoms in a small piece of volume 

makes it possible to measure the small difference of atoms in different states. 

In MRI imaging, an electromagnetic radiation pulse (RF pulse) is emitted at a 

certain resonance frequency. Nuclei in the parallel or low energy state will 
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change to the anti-parallel or high energy state, and will return to the low 

energy state at the end of the RF pulse, emitting energy in form of photons 

that reflects the difference between energy states. These photons can be 

detected using proper instruments. 

Because the main magnet generates a constant field, all the nuclei that have 

the same magnetic moment have the same resonance frequency. This 

means that a signal that causes an MRI in these conditions can be detected, 

but with the same value of all parts of the body, so there is no spatial 

information. To solve this problem, gradient coils are added. Each of the coils 

generates a magnetic field of a certain intensity with a controlled frequency. 

These magnetic fields alter the magnetic field already present and, therefore, 

the resonance frequency of the nuclei. By using three orthogonal coils it is 

possible to assign to each region of the space a different resonance 

frequency, so that when resonance occurs at a certain frequency it will be 

possible to determine the region of the space from which it originates. 

By modifying the acquisition parameters and pulse sequences it is possible 

to obtain different signal properties for tissues or physiological processes. 

There are three main modalities of MRI: structural MRI (sMRI), diffusion MRI 

(dMRI) and functional MRI (fMRI). The last method is outside of the scope of 

this thesis, so I will focus on the other two modalities. 

For the sMRI, the most common sequences are T1-weighted (T1w) and T2-

weighted (T2w) scans. There are two main parameters to create the different 

contrasts: the repetition time (TR), that is the length of time between 
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corresponding consecutive points on a repeating series of pulses and 

echoes; and the echo time (TE), that is the time between the RF excitation 

pulse and the centre of the acquired echo signal. To create a T1w image, 

magnetization is allowed to partially recover before measuring the MR signal 

by changing the TR. For this purpose, the TR is short. In this acquisition, the 

TE is also kept short to minimise the T2w effects. This image weighting is 

useful for assessing the cerebral cortex and is especially useful for identifying 

tissue with a high fat content. To create a T2w image, in opposition to T1w, 

the magnetization is allowed to decay before the signal acquisition. This is 

done by increasing the TE. The TR is also long to allow T1 recovery and 

hence minimize T1w effects. This image weighting is useful for detecting WM 

lesions. Ideally both images should be used together, because they provide 

complementary information. For example in the human healthy adult brain, 

WM in T1w scans looks brighter than grey matter (GM), in opposition to how 

they look on T2w; this contrast difference may allow us to identify features in 

one of the modalities that are not possible to see in the other (Figure 1.2.). 
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Figure 1.2: Relationship between TR and TE with different image contrasts. From 

(http://mriquestions.com/image-contrast-trte.html). 

Several analyses beyond a simple visual exploration can be applied to the 

sMRI data to obtain different properties to identify if the subject has some 

pathologies and to assess myelination. These techniques allow us, for 

example, to obtain accurate tissue segmentation of the brain (111), 

anatomical parcellations in the different cortical regions of interest (ROIs) 

(112) or to create myelin maps of the brain (113), amongst other parameters. 

1.3.1. Diffusion MRI 

Diffusion MRI is a technique that uses different gradient pulses to stimulate 

the water molecules and measure their movement in tissue. Due to thermal 
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excitation, water molecules exhibit Brownian motion (114), but inside different 

tissues, this motion is restricted due to the membranes of different cellules 

(Figure 1.3.). Diffusion MRI is the only technique that allows one to measure 

the water molecule displacement in-vivo. 

To create MRI images sensitive to water diffusion, the homogeneity of the 

applied magnetic field must vary (linearly), which is achieved by using a 

pulsed field gradient. The protons will begin to precess at different rates, 

proportional to the magnet strength at each point of the gradient. This results 

in a dispersion of the phase and a signal loss.  

To re-phase the spins of the protons, a new gradient pulse with the same 

magnitude and opposite direction has to be applied. Since the protons have 

moved during the interval between pulses due to the Brownian motion, they 

will not be fully re-phased, hence the signal detected by the MRI equipment 

will be smaller.  

The above described method was initially designed for nuclear magnetic 

resonance, by Stejskal and Tanner (115). They linked the reduction of the 

signal to the amount of diffusion through the following equation:  

𝑆(𝑇𝐸)

𝑆0
=  𝑒

−[𝛾2𝐺2𝛿2(∆−
𝛿
3

)𝐷]
  

Where S0 is the signal intensity without the diffusion weighting, S is the signal 

with the gradient, 𝛾 is the gyromagnetic ratio, G is the strength of the gradient 

pulse, 𝛿 is the duration of the pulse, ∆ is the time between the two pulses, 

and D is the diffusion-coefficient. 
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To know where this attenuated signal comes from exactly, another pulse has 

to be introduced in the mix. This is what is known as a “motion-probing” 

pulse, and it is applied together with the magnetic gradient pulses that are 

used in regular MRI to locate the signal. That combination of pulses produces 

the appearance of cross-terms, which makes the Stejskal-Tanner equation 

inaccurate. The interactions between pulses must be calculated and 

integrated in the function, and the equation becomes too complex. Thus, Le 

Bihan suggested a simplification by representing all the gradient terms as a 

“b factor” (which depends on the acquisition parameters) (116). The formula 

for calculating the signal attenuation becomes, then: 

𝑆(𝑇𝐸)

𝑆0
=  𝑒−[𝑏∗𝐴𝐷𝐶] 

The diffusion coefficient D is replaced by an apparent diffusion coefficient 

(ADC) to indicate that the diffusion process is not free in tissues, but hindered 

and modulated by many mechanisms (restriction in closed spaces, tortuosity 

around obstacles, etc.) 

The WM of the brain is highly organized and restricts the movement of the 

water molecules, providing a faster diffusion in the direction of the fibres and 

slower perpendicularly to them (117) (Figure 1.3.). 
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Figure 1.3: Movement of water molecules in constrained environment. A representation 

of how the water molecules interact with the myelinated axons. It is possible to observe how 

water diffuses parallel to the axons and is restricted in the perpendicular direction. From 

“Characterization of Cerebral White Matter Properties Using Quantitative Magnetic 

Resonance Imaging Stains” by Alexander, A.L. et al. 2011. Brain Connectivity (118). 

By applying several gradients, it is possible to detect movement of water 

molecules in different directions, and how it is restricted by microstructural 

properties of tissues. 

There are several mathematical models which are available to quantify this 

phenomenon of the directionality of the WM: from the more simple diffusion 

tensor imaging (DTI) (119) to more complicated models like Q-ball imaging 
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(Q-Ball) (120), constrained spherical deconvolution (cSD) (121) or diffusion 

spectrum imaging (DSI) (122). 

The DTI model represents each voxel as an ellipsoid (tensor) that quantifies 

the water movement inside it. From this tensor representation it is possible to 

obtain different information, from scalar values that allow inference about WM 

microstructural integrity, such as FA or MD; to more complex representations 

of the fibre directions of the brain, in, for example, tractography. 

From the tensor representation of the DTI model, it is possible to obtain the 

three eigen values that represent the axes of the tensor (𝜆1,2,3) in each voxel, 

where the first value represents the longer axis of the tensor. The previously 

mentioned FA and MD are defined using eigen values. FA is a scalar 

between 0 and 1 that indicates the degree of anisotropy of the diffusion 

process: 

𝐹𝐴 =  √
1

2
 
√(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 − 𝜆1)2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

MD provides an average of the three axes and represents the diffusivity in 

the voxel: 

𝑀𝐷 =
𝜆1 + 𝜆2 + 𝜆3

3
 

Both metrics have been widely used in different MRI studies as biomarkers 

for different diseases (123-125) and especially to study brain development 

(97, 126-133). 
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However the DTI model has some disadvantages, the most important one 

being the impossibility of representation of complex fibre distributions, for 

instance, FA is naturally low in normal WM areas where fibres cross (134). 

To overcome this limitation different mathematical models have been 

suggested based on more complex acquisition sequences. These methods 

have the ability to detect complex fibre distributions in the brain (those 

complex distributions are present in around 90% of the brain voxels (135)) 

(Figure 1.4.).  

 

Figure 1.4: Simulated configurations of a complex fibre bundle. The following 

configurations of “crossing-fibers” are shown: bending (i) and fanning (ii) fibre bundles, 

interdigitating fibres (iii) and adjacent (iv) fibre bundles. From “Diffusion Tensor Imaging and 

Beyond” by Tournier, J.D. et al. 2011. Magnetic Resonance in Medicine (136). 

Diffusion MRI can be also used to obtain more insightful information on tissue 

features, such as the axon diameter (137, 138) or the microstructural 

complexity of dendrites and axons (139). Usually these methods rely on a 
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model that relates microscopic features of tissue architecture to MRI signals. 

In general, the approach acquires a set of images with different sensitivities 

and fits a model to each voxel (140). However, these models require 

specially acquired data and are outside of the scope of this thesis. 

 

1.3.1.1. Tractography 

Tractography is the technique of tracing brain tracts using diffusion MRI data. 

By using one of the previously mentioned models, in each voxel the 

direction(s) of the water molecule displacement can be fitted (141, 142). By 

following these directions it is possible to track different fibre tracts. 

Tractography has been used in a number of different applications, such as 

surgical planning (143) or to find differences in WM architecture between 

groups (144, 145). It has also been employed in several studies of the 

developing brain to find global differences between term born and preterm 

born neonates (146, 147), to see the effects of different treatments (29) or 

different diseases (148, 149), to delineate (in-vivo) different tracts during 

brain development (150) or to establish patterns of development (151). 

Tractography is a powerful tool that is continuously evolving and more 

advanced frameworks are being created that allow the research and clinical 

community to create more accurate representations of brain fibres, for 

example by allowing them to impose anatomical constrains on the tracts 

(152, 153). However almost all tools were designed and tested for the human 

adult brain, and so cannot be applied to neonatal data. For instance, one of 
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the most widely used mechanisms for seeding  fibre tracts in the adult brain 

is to use the grey matter/white matter interface (GMWMI) (152-154); but due 

to differences in GM/WM tissue contrast in the neonate which limit tissue 

segmentations, several studies have used use a mask created by 

thresholding the FA maps as a seeding region. There is a need for the 

neonatal research community to produce more accurate algorithms in order 

to be able to apply the more advanced frameworks already in use with the 

adult brain. 

 

1.3.2. MRI of the developing brain 

The brain of a neonate has a higher water content than that of an adult brain, 

especially in the case of premature babies, and so T1 and T2 values are 

greater. Thus, to optimize image quality, the imaging sequences need to be 

adjusted by increasing the TR, TE and inversion time (155).  

The usual MRI sequences for clinical assessments in neonates are T1w, 

T2w, dMRI and inversion recovery, while sometimes susceptibility weighted 

imaging (SWI) and MR angiography can also be considered (156).  

The 1.5-3 T MRI systems available in clinical practices do not allow the 

differentiation of the most frequent (although subtle) neuropathological 

patterns such as non-cystic PVL (71, 157). The reason for this is that the 

conventional qualitative MR used for imaging the whole brain has millimetre 

resolution, while the processes associated with microcystic necrosis (for 
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instance, the focal component of non-cystic PVL), as the name suggests are 

of micron order resolution.  

1.4. Image registration 

Image datasets can be acquired through using different techniques, at 

different times or on different objects. To be able to compare them, they have 

to be combined into one co-ordinate system so that they can be matched 

according to certain features. This process is known as image registration. 

In order to perform a registration, an algorithm executes an unknown 

geometric transformation for each point of one dataset so that the objects 

present in an image are aligned with those of a reference image.  The goal is 

to identify the spatial correspondence between datasets that minimizes the 

differences amongst certain features of the depicted objects.  

Image registration can be linear (all pixels of an image rotate uniformly) or 

nonlinear (deformable). Rigid deformations can be very effective when no 

anatomic changes are expected, but in many scenarios there are great 

differences even within the same dataset. Deformable registration can handle 

local distortion between two images. Usually the linear transformations are 

used as an initialization for the nonlinear transformation. 

The registration algorithm is composed of three main elements: 1) a 

deformation model, 2) an objective function and 3) an optimization method 

(158). 
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1.4.1. Deformation model 

Several models have been developed for the nonlinear transformations (for a 

review see Sotiras et al. (158)), and the choice on which one to use depends 

on the user and the problem at hand. There is not a unique solution for which 

model to use. An interesting review of the different models and their 

performance in registering different human brain imaging datasets was 

performed by Klein et al. (159). For this work I will mainly use two of the most 

popular models: Free-Form Deformations (FFDs) (160) and symmetric 

normalization (SyN) (161). 

In the FFDs method a rectangular grid becomes deformed under the 

influence of the control points. B-splines serve the purpose of interpolating 

the dense deformation field from a given control point configuration (160). 

Meanwhile, SyN methodology uses a symmetric parameterization of the 

shortest path of diffeomorphisms connecting two neuroanatomical 

configurations. The SyN formulation uses a bidirectional gradient descent 

optimization which gives results that are unbiased with respect to the input 

image (161). 

1.4.2. Matching criteria 

The goal of registration is to maximise the similarity between two images. 

There are two main types of matching criteria: geometric-based or intensity-

based correspondence (162). Geometric methods match the spatial 

correspondence of different landmarks defined in different anatomical 
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positions, and intensity-based methods quantify the alignment of images by 

evaluating an intensity-based criterion over the whole image domain.  

The second method has the advantage of better quantification and 

representation of the accuracy of the estimated dense field at the expense of 

increasing the computational cost considerably. 

1.4.3. Optimisation method 

Once the deformation model and the matching criteria are chosen, the aim of 

optimization is to infer the optimal transformation that best aligns two images 

according to the selected deformation model and matching criteria. The 

selection of the different optimisation methods determines the quality of the 

final result. Different matching criteria usually have several local minima that 

may lead the registration process to converge. A good optimization method 

should be able to ignore all the local minima and converge on a global 

solution that generates an accurate registration (163). Different optimization 

methods have been reviewed and their performance has been evaluated in 

rigid and non-rigid registration problems in the literature (164, 165). 

 

1.5. Structural connectivity brain network  

One of the most common applications of tractography is to combine it with a 

sMRI parcellated image to create a structural connectivity brain network. This 

refers to the existence and structural integrity of tracts connecting different 

brain areas (i.e. WM tracts connecting cortical areas/nuclei). This approach 
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has been called “connectomics” (166), and it allows exhaustive mapping of 

inter-regional structural connectivity within the brain, enabling one to build a 

graph model of the neural circuits known as a structural brain network or 

“connectome” (167) (Figure 1.5.). This is a matrix representation of the 

previously mentioned network where the rows and columns are the nodes 

and the numbers inside the matrix are a metric inferred from the WM 

connections between two regions (edges). Physical properties of the fibres 

such as FA, intra-axonal volume (131, 139) and MD as well as the number of 

fibres (e.g., percent of all fibres passing from/ending in two regions) can be 

used as metrics, amongst others. 

 

Figure 1.5: Main steps of the structural connectome framework. From left to right: a) 

parcellation of the brain in different ROIs; b) tractography of the diffusion MR image; c) 

merging of both information and creation of a network. Adapted from “Imaging connectivity: 

MRI and the structural networks of the brain.” by Clayden, J.D. et al. 2013. Functional 

Neurology (168). 

These matrices can be analysed in different ways to investigate differences 

between and within groups. After pre-processing steps such as the removal 

of anatomically implausible connections (169) or the thresholding of matrices 

in order to remove spurious or noisy links (for a review of analysing the 

b) a) c) 
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structural brain networks see Fornito et al. (170)), there are two main 

methods of comparing different groups: 

- Apply graph theory and mathematical modelling to extract complex 

information about the dynamic of the networks, such as topological measures 

of the network (e.g. global efficiency) (171).  

- Edge-wise comparison and statistical analysis to identify connections 

associated with a particular effect or contrast of interest, such as a group 

difference in a case-control comparison or a correlation with clinical 

measures (172); this allows us, for example to identify different sub-networks 

related to a pathology. 

Connectomics has been used successfully on different human populations to 

construct structural brain networks in relation to features/diseases: the 

association of sex with brain size (173), intelligence (174), the effect of 

schizophrenia on the brain network (124, 175, 176), Alzheimer disease (177, 

178) or the evolution of brain networks across lifespan (179). This method 

has also been successfully applied to non-human populations, for example 

mice (180) or monkeys (181). Recently a new field has emerged called 

“comparative connectomics”, defined as the comparison of the topological 

layout of nervous systems across species with the aim of identifying common 

features in networks of different species (182). 

 

 



 

53 

 

1.5.1. Structural connectivity in the developing brain 

More recently, different studies employed structural connectomics to study 

the neonatal population. Yap et al. characterized normal development of the 

human brain during the first stages of life, from 2 weeks until 2 years (183); 

Shi et al. combined these data with morphological networks (184) to study 

neonates who are at a high risk of schizophrenia, and found that neonates at 

a genetic risk of schizophrenia had altered structural associations and fibre 

connections (148).  Ratnarajah et al. found hemispheric differences in 

structural connectivity in neonatal brains (185) and Zhao et al. found regional 

differences in the maturation of the brain (186). Employing different 

connectome weights, Pannek et al. found that diffusion metrics produced 

differences between term and preterm born neonates, but only quantitative 

T2 relaxation time measures were associated with the degree of prematurity 

(187).  

Brown et al. studied the topology and longitudinal change in the structural 

connectome of a cohort of normative preterms showing how different network 

metrics evolve with age (146). The same group also used a machine learning 

algorithm to predict gestational age (GA) from the connectome of preterm 

infants (188), and different frameworks (one based on the identification of 

anatomical subnetworks and another using convolutional neural networks) to 

predict the Bayley cognitive and motor scores obtained 18 months after birth 

(189, 190). Keunen et al. related the neonatal connectome to IQ and 

processing speed at the age of 5, providing evidence that the blueprint of 
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later cognitive achievement is already present at term-equivalent age and 

suggest that WM connectivity strength may be a valuable predictor for long-

term cognitive functioning (191). 

Tymofiyeva et al. applied an automated template-free structural connectivity 

framework to map the connectome across different ages, and observed 

increasing brain network integration and decreasing segregation with age in 

term-born subjects (192). Comparing the neonate and the adult connectome, 

van den Heuvel et al. found the presence of an early small-world modular 

architecture of the human neonatal connectome (193); Ball et al. report that 

the rich club (194) organization is present well before the normal time of birth 

and may provide the fundamental structural architecture for the subsequent 

emergence of complex neurological functions (195); and Wee et al. provided 

novel evidence that the variability of brain anatomical organization at birth 

predicted internalizing and externalizing behaviours in early childhood, 

suggesting that foetal brain development plays a crucial role in behavioural 

development later in life (196). 

Finally, Batalle et al. demonstrated the existence of a core of key connections 

that are not affected by GA at birth. However, they also found that local 

connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate 

gyrus and short range cortico-cortical connections was related with GA at 

birth and contributed to an altered global topology of the structural brain 

network (131). This is consistent with earlier findings implicating atypical 

cortothalammic connectivity in relation to age at birth (197-202), that persists 
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at age 2 years, and may contribute to later impairment, and is part of a wide 

disconnectivity phenotype. 

1.5.2. Limitations of structural connectivity studies in the 

developing brain 

The over-arching framework in creating the structural connectome is constant 

and independent of the data used to create it, but each step needs to be 

carefully designed for the data used. For example, anatomical parcellation of 

the adult human brain is often carried out using Freesurfer (203), but in 

neonatal age groups the most common strategy used for the parcellation is 

atlas registration (204). However, this approach has several limitations in 

neonates, when variation in brain structure over time is large. In recent times, 

more sophisticated approaches are being developed to parcellate the 

neonatal brain using more information than is provided by simple atlas 

registration, for example, by adding information on the age of the neonate 

using spatio-temporal templates (205) and using the intensity of the image 

not only to guide the registration, but also to increase the accuracy of the 

parcellation using the expectation-maximization algorithm (206-209). 

Another area of uncertainty in neonatal structural connectivity is optimal 

tractography construction. Ideally, an accurate tissue segmentation is needed 

to generate an anatomically plausible seeding region. For instance, following 

the idea that, for adult data, a mask derived from thresholding the FA data at 

0.2 provides a good estimation of the WM, several studies use an FA 

threshold to generate a seeding area, and this has varied between 0.08 and 
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0.2 (146, 148, 183, 185, 187-189, 192, 193, 210), (191). This approach of FA 

thresholding has several limitations in neonates, not least because of low FA 

values and a large partial volume effect. Furthermore, these thresholds may 

be too restrictive and remove parts of the WM or allow tracts to cross CSF 

(Figure 1.6.). Only a few studies used another strategy to restrict the seeding, 

for example, to seed from different anatomical areas/ROIs (185, 195, 196) or 

using a tissue segmentation to generate the GMWMI in order to impose 

anatomical constraints (131). 

 

Figure 1.6: Effect of different FA thresholds. Different FA thresholds can allow tracts to 

cross through the CSF (b and e), include some GM areas (c), go outside of the brain (a), 

while some WM areas are not selected (d and f). WM seeding is much more accurate, but in 

some areas tissues are misclassified (g) due to the low contrast between tissues. 

Another factor to be taken into account is the tracking algorithm. Due to the 

low b-values that are often used to acquire the neonatal diffusion MRI data 

(usually between 750-1000 s/mm2), the majority of published work has been 

performed using deterministic tensor based tracking algorithms (146, 148, 

183, 185, 186, 188, 189, 191-193, 196, 210). Only a few groups have 

attempted to solve the crossing fibre problem. Pannek et al. and Ball et al. 

used a probabilistic algorithm based on the “balls and sticks” fitting of up to 
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two fibres per voxel (187, 195, 211); Batalle et al. (131) used dMRI data 

acquired with a b value high enough to resolve crossing fibres using the cSD 

and iFOD2 algorithms (121, 212); and recently Tosselli et al. used cSD with 

low b values in neonates to improve the tractography results (213). 
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2. Hypotheses and methods 
 

This thesis aims to test the following hypotheses:  

1. A structural neonatal atlas can be created with the following features 

to represent ‘normality’, contain 107 labels transformed from adult 

space, and be interoperable across modalities: 

a. generated exclusively from healthy control subjects; 

b. Anatomic features which are consistent with adult labels to 

support longitudinal modelling; 

c. Operable across sMRI and dMRI;  

d. Contains symmetric templates which are provided to facilitate 

studies of cerebral laterality. 

2. Creation of a novel optimized framework which combines 

connectomics with along-tract statistics for automated group-wise 

comparisons of neonates:  

a. using ACT with age-specific segmentation and atlasing; 

b. using linear fascicle evaluation (LiFE) to optimize the 

tractography data, and connectivity matrices constructed to test 

for differences between groups; 

c. and to establish the proof of concept of the framework by 

replicating a previous observation that dMRI parameters are 

altered in specific tracts in preterm infants with exposure to 

antenatal MgSO4 for foetal neuroprotection compared to those 

without the exposure   
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3. Exposure to breastmilk in the weeks after preterm birth promotes brain 

development, evaluated by: 

a. Constructing the connectome using ACT with spherical-

deconvolution informed filtering of tractograms (SIFT), and 

using Network-based statistics (NBS) to perform an edge-wise 

comparison of the connectomes between groups. The global 

network measures are also compared between the groups with 

different breast milk exposures;  

b. Tract-based Spatial Statistics (TBSS) to calculate voxel wise 

differences in FA, MD, axial and radial diffusivity (AD and RD) 

across the WM skeleton based on breast milk exposure; 

c. Optimized algorithms for brain extraction and tissue 

classification to measure the effect of breastmilk exposure on 

global and local brain tissue volumes. 

The first hypothesis with the correspondent sub hypotheses is the third 

chapter of this thesis and has been already published. The second 

hypothesis (and sub hypotheses) corresponds to the fourth chapter. Finally, 

the last hypothesis (and sub hypotheses) is the fifth chapter of the thesis, and 

is currently, submitted and under review 

2.1. Methods 

2.1.1.        Babies used in the study 

 

98 neonates with GA at birth between 23+2 (weeks+days) and 41+6 weeks were 

recruited from the Royal Infirmary of Edinburgh between July 2012 and 
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August 2015. These infants were a sub-cohort of the first wave of the 

Theirworld Edinburgh Birth Cohort (TEBC, www.tebc.ed.ac.uk) ; the full 

cohort has been previously reported (29, 201, 214, 215). 

The group was divided into those babies with GA at birth <37 weeks (n = 65), 

and healthy controls recruited from postnatal wards with GA 37+2-41+6 weeks 

(n = 33). Exclusion criteria included major congenital malformations, 

chromosomal abnormalities, congenital infection, overt parenchymal lesions 

(cystic periventricular leukomalacia, hemorrhagic parenchymal infarction) or 

post-hemorrhagic ventricular dilatation. Demographic information is shown in 

T2.1. Ethical approval was obtained from the National Research Ethics 

Service (South East Scotland Research Ethics Committee 02) and informed 

consent was obtained from the person with parental responsibility for each 

individual participant included in the study. 

Table 2.1: Overview of the main characteristics of the employed cohort 

 
 Preterm (n = 65) Term (n = 33) 

Mean GA at birth/weeks (range) 29+3 (23+2-34+6) 39+5 (37+2-41+6) 

Mean GA at scan/weeks (range) 39+7 (38-42+5) 42+2 (39-47+1) 

Mean birth weight/kg (range) 1.16 (0.55–1.54) 3.42 (2.35-4.67) 

 

In the following chapters, the population will be described in more detail, 

taking all the parameters needed for the study design into account. 

2.1.2. MRI acquisition protocol 

A Siemens MAGNETOM Verio 3T MRI clinical scanner (Siemens Healthcare 

Erlangen Germany) and 12-channel phased-array head coil were used to 

acquire the following sequences: T1w MPRAGE (TR = 1650 ms, TE = 2.43 
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ms, inversion time = 160 ms, flip angle = 9°, voxel size = 1 × 1 × 1 mm3, and 

acquisition time = 7 min 49 s); T2w SPACE1 (TR = 3800 ms, TE = 194 ms, 

flip angle = 120°, voxel size = 0.9 × 0.9 × 0.9 mm3, acquisition time = 4 min 

32 s); and dMRI using a protocol consisting of 11 T2- and 64 diffusion-

weighted (b = 750 s/mm2) single-shot spin-echo echo planar imaging (EPI) 

volumes acquired with 2 mm isotropic voxels (TE = 106 ms and TR = 7300 

ms). To reduce eddy current induced artefacts and shimming errors to a 

minimum in the dMRI protocol, an optimized bipolar gradient pulse scheme 

was employed with a manually selected shim box covering a region 

extending from the top of the head to several centimetres below the chin. 

Infants were scanned without sedation in natural sleep using the feed-and-

wrap technique. Physiological stability was monitored using procedures 

described by Merchant et al. (216). Ear protection was provided for each 

infant (MiniMuffs, Natus Medical Inc., San Carlos, CA). 

Structural images were reported by an experienced paediatric radiologist 

(A.J.Q. and A.G.W) using the system described by Leuchter et al. (217) and 

images with evidence of injury (post-haemorrhagic ventricular dilatation, 

porencephalic cyst or cystic periventricular leukomalacia) or central nervous 

system malformation were excluded. 

 

  

                                                           
1 SPACE is an acronym for: Sampling Perfection with Application optimized Contrasts using different 
flip angle Evolution. Is a closely related Fast (Turbo) spin echo technique with special modifications 
optimizing it for isotropic 3D imaging. 
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3.  Parcellation of the healthy 

neonatal brain into 107 regions 

using atlas propagation through 

intermediate time points in 

childhood 
 

3.1. Introduction 

 

Labelled atlases provide anatomic information for a range of structural and 

diffusion MRI (sMRI, dMRI) analysis tasks including structural connectivity 

mapping and spatio-temporal modelling. In early brain development such 

approaches have the potential to provide neuroscientific and clinical 

advances including: provision of quantitative measures of typical brain growth 

in vivo, so defining ‘normal’ for a newborn population; mapping of atypical 

trajectories following adverse exposures such as preterm birth; evaluation of 

tissue effects of neuroprotective treatment strategies that are ready for 

evaluation in humans; uncovering neural substrates for childhood 

impairment; and facilitating investigation of the early life origins of adult 

neurological and psychiatric disease. 

 

The majority of human brain atlases have been developed using adult data 

[for review see Evans et al. (2012) (218)], and their use for studying the brain 

during early life may not be valid due to differences in adult and newborn 

anatomy and image properties (219-223). The latter include marked variation 
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in head size and shape, maturational processes leading to changes in signal 

intensity profiles, relatively lower spatial resolution, and lower contrast 

between tissue classes (224-229). Such differences can lead to 

misclassification of tissues/structures, so it is essential to match the study 

group to age-appropriate reference volumes and a number of templates have 

been developed for this purpose (230-233). 

 

Atlases can be created by manual delineation of a single subject or a small 

number of subjects. Several investigators have defined protocols to delineate 

regions of interest (ROIs) in neonatal data. For example, Gilmore and 

colleagues manually parcellated a single neonatal brain into 16 cortical 

regions, 20 subcortical regions, brainstem and cerebellum (234); Goussias 

and colleagues manually parcellated 20 neonatal brains (15 preterm and 5 

term-born infants) into 50 regions (the ALBERTs atlas) (235); and Kabdebon 

et al. (2014) created a 94 region neonatal single-subject template by 

adapting an adult brain atlas (236) and used it to derive probability maps for 

the locations of 6 main sulci in cohort of 16 newborn infants (237). In recent 

work, Alexander and colleagues (238) manually labelled 33 cortical areas per 

hemisphere corresponding to those in the Desikan-Killiany adult brain atlas 

(239) in three term neonates. While such atlases describe anatomical detail 

well (234, 237, 238), they may not capture population diversity adequately 

(218), are time-consuming to generate and are susceptible to inter- and intra-

rater variability. 
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Some of these issues can be overcome using computational modelling 

techniques. For example, the University of North Carolina (UNC) atlas was 

created using image registration and label fusion to propagate an adult brain 

atlas to 95 neonates through 2 and 1 year old templates (236, 240). Wu and 

colleagues used large deformation registration to propagate 62 

neuroanatomical labels from adults to 15 neonatal brains and performed 

multi-atlas labelling based on accurate prior-based tissue segmentation 

(241). Makropoulos and colleagues performed multi-atlas segmentation by 

label fusion using the ALBERTs atlas (242), and subsequently propagated 

the segmentations (plus labels of cortical ribbon) to the coordinate space of 

Serag et al. (205) and averaged these data with an age kernel at each 

timepoint to create a 4D atlas with 87 labelled structures (243). While these 

atlases are generally generated from a large cohort and capture population 

diversity, they are prone to registration error due to shape and tissue contrast 

differences between adult and neonatal brains. 

 

There are also approaches that combine single subject parcellation with 

computational methods to create a template. For example, Oishi and 

colleagues created a template from 20 subjects and propagated a manually 

labelled single subject (122 regions including WM parcellations) to the 

template using image registration (244); and subsequently, Zang and 

colleagues modified the atlas to represent the average anatomic features of 

the study group by evolving the initial atlas to the representative ‘center’ of 

the study population, based on the morphological information (245).  
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In summary, recent advances in standardised delineation of ROIs and 

computational modelling have led to the development of templates for studies 

of childhood brain development. However, most existing neonatal atlases 

contain less anatomical information compared to adult atlases, often include 

atypical participants which leaves uncertainty about ‘normal’ representation. 

They also work mainly with one modality and use labelling protocols that do 

not map readily to established adult atlases, and none facilitate studies of 

laterality in early life when it may be desirable to distinguish asymmetries in 

the study population from those of the atlas. These limitations led us to 

create a new neonatal atlas (ENA33), which has the following features: 

 

1. ENA33 is generated exclusively from healthy control subjects, so 

represents ‘normal.’  

2. The atlas has 107 anatomical regions transformed from an adult atlas, 

so it is consistent with adult label protocols. 

3. ENA33 is operable across different modalities including sMRI and 

dMRI.  

4. Symmetric templates are provided to facilitate studies of cerebral 

laterality. 
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3.2. Materials and methods 

 

3.2.1. Overview 

 

The atlas construction framework consists of two main steps. First, each 

subject is parcellated into anatomical ROIs using temporal registration (246) 

of an adult atlas (247) via intermediate spatio-temporal templates of the 

National Institutes of Health Pediatric Database (NIHPD) (248, 249). Second, 

a groupwise atlas is constructed from the parcellated cohort of healthy 

neonates using Symmetric Group Normalization (SyGN) (250). 

 

3.2.2. Participants 

 

For the atlas construction, 33 healthy infants born at term (>37 weeks’ GA) 

with mean GA at birth 39+5 weeks (range 37+2-41+6) and with mean 

birthweight of 3.42 kg (2.35-4.67) were used. Subjects underwent MRI at 

mean 42+2 weeks (range 39-47+1). Results from a subset of the group have 

been reported previously (29).  

 

3.2.3. Image registration 

 

For each registration between two different volumes, a linear transformation 

was first computed and used as an initialisation to compute a non-linear 

transformation. In other words, a transformation 𝑇(𝐱) for a point 𝐱 in 3D 

space with coordinates x, y and z is computed as follows (160): 
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𝑇(𝐱) = 𝑇𝑔𝑙𝑜𝑏𝑎𝑙(𝐱) + 𝑇𝑙𝑜𝑐𝑎𝑙(𝐱)                 

  

  

where 𝑇𝑔𝑙𝑜𝑏𝑎𝑙 represents the linear transformation and 𝑇𝑙𝑜𝑐𝑎𝑙 represents the 

non-linear transformation. The computed transformation maps all the points 

of a ‘Target’ volume to a ‘Source’ volume (𝑇𝑇𝑎𝑟𝑔𝑒𝑡,𝑆𝑜𝑢𝑟𝑐𝑒). Note that the 

addition of the transformations is different from the composition, the addition 

represents that the output from one transformation (in this case the affinely 

registered image) is the input to the following transformation, meanwhile the 

composition of transformations works by combining all the transformations 

together in a single transformation, and then, applying it to the moving image. 

 

The interpolation used for all intensity images was B-spline because of its 

efficacy (251); and Nearest Neighbor interpolation was used for label maps 

so as not to introduce new classes. 

 

3.2.4. Pre-processing 

 

For dMRI, FA and MD volumes were calculated using the Camino Diffusion 

MRI Toolkit (http://cmic.cs.ucl.ac.uk/camino) (252). For each subject, the T1w 

volume was selected as the reference anatomy to which the T2w scan was 

linearly registered (6 degrees of freedom) using NiftyReg 

(http://cmictig.cs.ucl.ac.uk/research/software/niftyreg) (253, 254). Then FA 

and MD volumes were mapped to the same T1w space using the 

transformation of the first T2w volume of the dMRI dataset (B0) to T1w using 
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Advanced Normalisation Tools (ANTs, http://stnava.github.io/ANTs) (161) with 

mutual information as the similarity metric (255). Intra-subject registration of 

water diffusion maps involved linear plus a non-linear registration with the 

aim of minimising distortions associated with the single-shot spin-echo echo 

planar imaging acquisition sequence. We used affine and SyN (161) with a 

four-level multi-resolution scheme which ran until convergence or a fixed 

(maximum) number of iterations was reached. We allowed up to 100 

iterations at the first level, 100 iterations at the second, 100 iterations at the 

third and 20 iterations at the full resolution. The rest of the parameters were 

set to default settings. 

 

A brain mask was computed from the T1w volumes by removing non-brain 

tissues and skull using the ALFA method (256). The resulting mask was 

applied to all co-registered modalities, and all volumes were corrected for 

intensity inhomogeneity using the N4 method (257). Before the process of 

label propagation and template creation, all the subjects were affine 

registered to the 42 weeks template of Serag et al. (205).  

All the results were checked after this preprocessing stage to ensure that the 

N4 method and the skull stripping performed correctly. 

 

3.2.5. Tissue segmentation 

 

To create tissue segmentations, T1w volumes were first registered non-

linearly to the closest age-matched T1w template from the 4D atlas (258) 

using Free-Form Deformation (160) implemented in NiftyReg (253, 254) with 

http://stnava.github.io/ANTs
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default parameters. Then, the expectation-maximisation (EM) algorithm (209, 

222) was used to classify each voxel into a tissue class based on voxel 

intensity information and spatial-based probabilities (259); after this, 

segmentations were mapped back to the subject’s native space. The tissue 

probability maps were constructed by averaging the tissue segmentations to 

produce maps of GM, WM and CSF. 

 

3.2.6. Temporal registration via spatio-temporal atlases 

 

To parcellate the neonatal brain, the SRI24/TZO adult brain atlas (247) with 

90 ROIs (cortical and sub-cortical structures only) was propagated to the 

neonatal template using a spatio-temporal atlas from the online database of 

the NIHPD (248, 249) containing age-dependent templates between birth 

and 4.5 years old (4.5, 3.5, 2.5, 2, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and 0 year 

[neonate]) (McConnell Brain Imaging Centre; 

http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2). The SRI24/TZO 

atlas is based on the transformed version of the single-subject Automated 

Anatomical Labeling (AAL) atlas (236) to 24 healthy subjects. 

 

To model the very wide anatomical differences between adult and neonatal 

brain, we used the LISA method (246) where spatio-temporal atlases are 

used to aid the registration process between two volumes taken over large 

time-intervals as it provides prior information about the missing anatomical 

evolution between the two volumes to be registered. Given a pair of structural 

images from the adult atlas (𝐼𝑆𝑅𝐼24) and our neonatal cohort (𝐼𝑁𝐸𝑂), we aim to 
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find a transformation TNEO,SRI24 that maps every location in 𝐼𝑁𝐸𝑂 to 𝐼𝑆𝑅𝐼24 by 

estimating a deformation field to register 𝐼𝑆𝑅𝐼24 to 𝐼𝑁𝐸𝑂. To do this, we first 

mapped each template of the NIHPD to the preceding one: 𝑇3.5→4.5 =

𝑁𝐼𝐻𝑃𝐷3.5 → 𝑁𝐼𝐻𝑃𝐷4.5, 𝑇2.5→3.5 = 𝑁𝐼𝐻𝑃𝐷2.5 → 𝑁𝐼𝐻𝑃𝐷3.5,…, 𝑇0→0.25 =

𝑁𝐼𝐻𝑃𝐷0 → 𝑁𝐼𝐻𝑃𝐷0.25. After this step, the adult atlas was mapped to the 4.5 

year atlas (𝑇4.5→𝑆𝑅𝐼24 = 𝑁𝐼𝐻𝑃𝐷4.5 → 𝑆𝑅𝐼24) and the neonatal NIHPD template 

to NEO (𝑇0→𝑁𝐸𝑂 = 𝑁𝐸𝑂 → 𝑁𝐼𝐻𝑃𝐷0). All the transformations were then 

concatenated together: 

 

 𝑇𝑁𝐸𝑂→𝑆𝑅𝐼24 = 𝑇𝑁𝐸𝑂→0°𝑇0→0.25° … °𝑇4.5→3.5°𝑇4.5→𝑆𝑅𝐼24      

  

Finally, the combined transformation from the previous step (𝑇𝑁𝐸𝑂→𝑆𝑅𝐼24) was 

used to derive the registration between the 𝐼𝑆𝑅𝐼24  and 𝐼𝑁𝐸𝑂. The temporal 

registration process used is summarized in Figure 3.1. 
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Figure 3.1: The framework used for temporal atlas propagation. The SRI24/TZO adult 

atlas is propagated to the neonatal template from the NIHPD atlas through intermediate time 

points, and finally to the cohort under study. 

 

After registration, the transformation allowed locations in the target volume to 

be mapped to locations in the source volume. All the temporal registrations 

were performed using affine plus SyN (161) with mutual information as the 

similarity metric (255), since this is suitable for contrast changes associated 

with myelination of the brain during development. The last step, 𝑇0→𝑁𝐸𝑂 =

𝑁𝐸𝑂 → 𝑁𝐼𝐻𝑃𝐷0, was performed using cross correlation (260), because in this 

case the neonatal T1w template of the NIHPD was registered to subjects 

where there was no change in the contrast, so registration is intra-modality.  
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3.2.7. Template and atlas construction  

 

For template creation, we used the Symmetric Group Normalization (SyGN). 

This method works by coupling the intrinsic symmetry of each pairwise 

registration and optimizing the shape-based sharpening/averaging of the 

template appearance. The method has been used in previous studies with 

successful results (250, 261, 262).  

 

The SyGN method robustly maps populations to a common space by finding 

the template and set of transformations that gives the “smallest” 

parameterization of the dataset (250). The metric distance between the 

average affine transformation and the identity affine transformation as well as 

the diffeomorphism lengths gives the size of the parametrization. The method 

may be initialised using an external template or an inital template (Ī) that can 

be derived from the database of n images (𝐼𝑖). In this work, a 42 weeks 

template (the closest age-matched template to the mean of the cohort under 

study) from the 4D atlas (205) was used as an initial template. 

 

SyGN optimizes the shape of Ī via a diffeomorphism, ψ (which contains an 

affine transformation with 12 degrees of freedom), such that the size and 

shape of the brain converges to the group mean. This is achieved by 

optimizing the following energy iteratively,  

 

𝐸𝐼̅ =  ∑ 𝐸𝑆𝑦𝑁,∏(𝐼,̅ 𝐼𝑖 , 𝜙𝑖) where ∀𝑖, 𝜙𝑖 (𝐱, 0) =  𝜓(𝐱)

𝑖
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here ψ is a diffeomorphism representing the initial conditions of each optimal 

transformation (𝜙𝑖) that maps every point x in a 3D space of a image (𝐼𝑖) to a 

reference image (𝐼)̅. The solution for each pairwise problem is obtained using 

SyN (161). The algorithm iteratively minimizes the energy 𝐸𝐼̅ with respect to 

the set of 𝜙𝑖 through distributed computing (263). In this study, all volumes 

were previously affine registered to the initial template, so ψ did not contain 

an affine transformation. The procedure first optimizes the mappings with a 

fixed template, then, optimizes the template appearance with fixed shape and 

mappings, and, finally, optimizes the template shape. The process then 

repeats. The final template is obtained after four iterations. 

 

The final transformations were applied to map the corresponding label maps, 

tissue segmentation, and T2w, FA and MD volumes to the final template 

space. To create the final label map majority-voting (264) of all the 

propagated labels to the template space was used because it is known to 

perform well in studies of neonates (240). 

 

Studies of brain laterality benefit from a symmetric atlas because of the 

challenge of distinguishing asymmetries in the study group from those in 

atlas space, so we created a symmetric version of the atlas. This was 

created by flipping each subject’s T1w volume left to right, and using each 

volume as an independent subject in the template creation. Basically, the 

symmetric template contains 66 subjects, the 33 subjects plus the 33 
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subjects flipped, the transformations are then calculated independently for 

each one of the 66 images and then, the final transformed images, averaged 

in the template space, creating the final T1w symmetric template. The main 

difference between this approach and averaging each subject with the flipped 

version of itself and then doing the atlas, is that in our approach each 

transformation is calculated independently for the original image and the 

flipped image, instead of calculating one transformation for each averaged 

subject.  The final transformations were then applied to the other modalities 

which were also flipped including the label maps using methods described by 

Fonov and colleagues (248, 249). To create the final symmetric label map 

majority-voting (264) was also used. Other symmetric atlases have been 

created for different purposes, as could be the analysis of development of 

brain asymmetry in the context of language development (265), but they 

have to be used carefully, as in fact, these atlases lose the asymmetry 

contained in the human brain (266). 

 

An additional colour map to the standard coding scheme of the SRI24/TZO 

was created using brainCOLOR (267) to aid visualisation of lobes. This 

computes the optimal colour assignments for regions in a 2D or 3D brain 

image using a brute force strategy to maximize the distinguishability of 

adjacent regions while simultaneously choosing perceptually similar colours 

for groups of regions.  
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3.2.8. Validation  

 

Cross-correlation (CC) between registration of consecutive time points of the 

spatio-temporal atlas was used to evaluate accuracy of the final registration 

using methods described for temporal modelling of perinatal MRI data (259).  

 

After temporal propagation, labels were inspected and edited where 

necessary by a radiologist experienced in neonatal brain MRI (A.G.W.) 

according to the protocols defined in the The Human Brain During the Third 

Trimester (268) using ITK-SNAP (http://www.itksnap.org) (269). After the 

template was created, all labels were re-checked according to the same 

protocol. 

 

The accuracy of registration used for label propagation between the subjects 

and the registered atlas was tested. To do this, five landmarks were placed in 

ten randomly selected subjects and the atlas; the atlas was then registered to 

the subjects using affine and SyN (161) using cross-correlation as the 

similarity metric. The Euclidean distance between the landmarks of the 

subjects and those of the registered atlas were measured (270-273). The 

landmarks were placed at: the most rostral point of right and left superior 

temporal gyrus viewed in the coronal plane at the level of the third ventricle 

(referred to as cortical left and right in Table 3.2); the wall of the right and left 

bodies of the lateral ventricles at the level of the third ventricle in coronal 

plane (referred to as ventricles left and right in Table 3.2); and the floor of the 

fourth ventricle in the sagittal plane (referred as cerebellum in Table 3.2). To 
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investigate potential bias due to intra- and inter-rater variability in landmark 

placement, landmarks were placed by the same rater twice and by another 

rater. Raw measurements and intraclass correlation coefficient (ICC) using a 

two way mixed effects model are reported. 

 

To evaluate agreement of volumetric measurements obtained from ENA33 

with those of a comparable atlas,(the UNC atlas, which is derived from the 

same adult atlas), we compared lobar volumes using the protocol described 

by Tzourio-Mazoyer et al. (236): Central Region, Frontal Lobe, Temporal 

Lobe, Parietal Lobe, Occipital Lobe, Limbic Lobe, Insula and Sub Cortical 

Gray Nuclei plus the Corpus Callosum,  Lateral Ventricles, the Brainsteam 

and the Cerebellum. The proportion of intra-cranial volume of each region 

was calculated. Both label maps were multiplied by the respective mask, then 

the lobular volume was divided by the brain volume (mask volume). 

 

To investigate differences between the asymmetric and symmetric versions 

an Asymmetry coefficient (S) was calculated. The coefficinet (S) is defined 

as:  

 

𝑆 =
2∗|𝑉𝐿−𝑉𝑅|

𝑉𝐿+𝑉𝑅
      

  

where 𝑉𝐿 is the volume of the left ROI and 𝑉𝑅 is the volume of right ROI. The 

main difference with the index defined in previous studies (274, 275) is that, 

originally, the index is defined to perform voxel-wise studies, and here it is 
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adapted to a volumetric analysis. If template construction and label fusion 

were completely error free across the volume then S would have a value of 0 

for all regions in the symmetric version. 

 

3.2.9. Volumetric Analysis 

 

We non-linearly registered the final atlas to all subjects using ANTs (161) with 

the same parameters as above, with the aim of calculating the volume and 

different dMRI metrics of all ROIs for both hemispheres of the brain. The 

volumes and dMRI metrics for each region were calculated using FSL 

(http://fsl.fmrib.ox.ac.uk) (276). 

3.3. Results 

 

3.3.1. Neonatal brain parcellation 

 

ENA33 is shown in transverse sections using default colour scheme 

(generated by ITK-SNAP) in Figure 3.2, and Table 3.1 lists the labels. The 3D 

volume rendered atlas is shown in Figure. 3.3., using the default and 

brainCOLOR colour coding generated schemes. 

http://fsl.fmrib.ox.ac.uk/
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Figure 3.2: Anatomical parcellation of the neonatal brain (axial view). The slices have 3 

mm distance. 
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Table 3.1: Anatomical definition of all the ROIs and the correspondent Label ID  

Anatomical Definition 
Label 

ID  Anatomical Definition 
Label 

ID 

Precentral Left 1 
 

Fusiform Left 55 
Precentral Right 2 

 
Fusiform Right 56 

Frontal Superior Left 3 
 

Postcentral Left 57 
Frontal Superior Right 4 

 
Postcentral Right 58 

Frontal Superior Orbital Left 5 
 

Parietal Superior Left 59 
Frontal Superior Orbital Right 6 

 
Parietal Superior Right 60 

Frontal Middle Left 7 
 

Parietal Inferior Left 61 
Frontal Middle Right 8 

 
Parietal Inferior Right 62 

Frontal Middle Orbital Left 9 
 

SupraMarginal Left 63 
Frontal Middle Orbital Right 10 

 
SupraMarginal Right 64 

Frontal Inferior Opercularis Left 11 
 

Angular Left 65 
Frontal Inferior Opercularis Right 12 

 
Angular Right 66 

Frontal Inferior Triangularis Left 13 
 

Precuneus Left 67 
Frontal Inferior Triangularis Right 14 

 
Precuneus Right 68 

Frontal Inferior Orbital Left 15 
 

Paracentral Lobule Left 69 
Frontal Inferior Orbital Right 16 

 
Paracentral Lobule Right 70 

Rolandic Opercularis Left 17 
 

Caudate Left 71 
Rolandic Opercularis Right 18 

 
Caudate Right 72 

Supplementary Motor Area Left 19 
 

Putamen Left 73 
Supplementary Motor Area Right 20 

 
Putamen Right 74 

Olfactory Left 21 
 

Pallidum Left 75 
Olfactory Right 22 

 
Pallidum Right 76 

Frontal Superior Medial Left 23 
 

Thalamus Left 77 
Frontal Superior Medial Right 24 

 
Thalamus Right 78 

Frontal Median Orbital Left 25 
 

Heschl Left 79 
Frontal Median Orbital Right 26 

 
Heschl Right 80 

Rectus Left 27 
 

Temporal Superior Left 81 
Rectus Right 28 

 
Temporal Superior Right 82 

Insula Left 29 
 

Temporal Pole Superior Left 83 
Insula Right 30 

 
Temporal Pole Superior Right 84 

Cingulum Anterior Left 31 
 

Temporal Middle Left 85 
Cingulum Anterior Right 32 

 
Temporal Middle Right 86 

Cingulum Middle Left 33 
 

Temporal Pole Middle Left 87 
Cingulum Middle Right 34 

 
Temporal Pole Middle Right 88 

Cingulum Posterior Left 35 
 

Temporal Inferior Left 89 
Cingulum Posterior Right 36 

 
Temporal Inferior Right 90 

Hippocampus Left 37 
 

Corpus Callosum 91 
Hippocampus Right 38 

 
Lateral Ventricle Left 92 

ParaHippocampal Left 39 
 

Lateral Ventricle Right 93 
ParaHippocampal Right 40 

 
Midbrain Left 94 

Amygdala Left 41 
 

Midbrain Right 95 
Amygdala Right 42 

 
Pons Left 96 

Calcarine Left 43 
 

Pons Right 97 
Calcarine Right 44 

 
Medulla Left 98 

Cuneus Left 45 
 

Medulla Right 99 
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Cuneus Right 46 
 

Cerebellum Left 100 
Lingual Left 47 

 
Cerebellum Right 101 

Lingual Right 48 
 

Vermis Anterior Left 102 
Occipital Superior Left 49 

 
Vermis Anterior Right 103 

Occipital Superior Right 50 
 

Vermis Posterior Left 104 
Occipital Middle Left 51 

 
Vermis Posterior Right 105 

Occipital Middle Right 52  Vermis Central Left 106 
Occipital Inferior Left 53  Vermis Central Right 107 
Occipital Inferior Right 54    
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Figure 3.3: 3D rendered of the atlas. Comparing both color codes: standard color code (left 

column) versus created color code (right column). 

An intial step from adult to 4.5 years was used because we found that  no 

additional benefit was conferred by the inclusion of three time points at 15.5, 

10.5 and 6.5 years: the normalised cross correlation between registered 
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images generated using both approaches was ≈0.98. 

 

3.3.2. Application of the atlas to multi-modal data 

 

Figure 3.4 shows the templates for available modalities. Nine participants 

had T2w volumes that were free of motion artefact and suitable for 

registration, so the T2w template shown is constructed from this subset.  

 

Figure 3.4: Different template modalities: From left to right: T1w template, T2w template, 

label parcellation map overlaid on T1w template, FA template and MD template. and tissue 

probability maps for CSF, GM and WM 

 

Figure 3.5 shows the symmetric version of the atlas compared with the 

asymmetric version, and Figure 3.6 shows the differences in S for each ROI. 

S was <0.05 for all regions in the symmetric version, and values ranged from 

0.01-0.9 in the asymmetric version. 
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Figure 3.5: Upper row: asymmetric version of the atlas; Lower row: symmetric version 

of the atlas. From left to right: T1w template, T2w template, and label parcellation map 

overlaid on T1w template 

 

 

Figure 3.6: Asymmetry coefficient in the asymmetric atlas and the symmetric versions 

of ENA33. 
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3.3.3. Validation 

 

Cross correlation between the intermediate time points was high (0.93±0.05). 

The smallest values were 0.81 and 0.87 for the last two steps (3 month to 1 

months and 6 months to 3 months), which is a period of dynamic change in 

signal intensity associated with myelination. The rest of the values were 

above 0.94. 

 

Assessment of parcellations by an expert (A.G.W.) according to a reference 

atlas [(The Human Brain During the Third Trimester (268)] led to minor edits 

in thalamus, pallidum, and putamen bilaterally. The following labels were 

added manually: posterior fossa (with its corresponding sub-areas), lateral 

ventricles and corpus callosum. After the template was created, the labels 

were checked again, and minor corrections were made at the brain–CSF 

boundary only. 

 

The Euclidean distance between landmarks in native space and those of the 

registered atlas were in an acceptable range for both raters (Table 3.2), and 

the ICC was >0.95 for intra- and inter- rater variation. 
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Table 3.2: Landmark registration accuracy (Euclidean distance between ENA33 and 

individuals) 

 Distance (mm) 

 
Rater 1 

Rater 1 second 
time Rater 2 

Landmark Mean (SD) Mean (SD) Mean (SD) 

Cortical Left 1.29 (0.82) 1.17 (0.79) 1.66 (0.81) 
Cortical Right 1.58 (0.91) 1.58 (0.86) 1.89 (1.21) 
Cerebellum 1.15 (0.59) 1.02 (0.59) 1.16 (0.61) 
Lateral Ventricle Left 1.89 (0.49) 1.86 (0.59) 2.33 (0.60) 
Lateral Ventricle 
Right 1.77 (0.63) 1.85 (0.92) 2.08 (0.85) 

 

There was broad agreement between the lobar volumes calculated as a 

proportion of intracranial volume from ENA 33 and the UNC atlas, shown in 

Table 3.3. 

 

Table 3.3: Volumes of interest calculated from ENA33 and UNC atlases 

 ENA 33 Atlas UNC Atlas 

Region Proportion of 
intracranial 
volume (%) 

Proportion of 
intracranial  
volume (%) 

Central Region 7.57 7.46 
Frontal Lobe 34.41 36.3 
Temporal Lobe 8.80 11.19 
Parietal Lobe 8.53 11.6 
Occipital Lobe 13.23 14.55 
Limbic Lobe 5.9 8.57 
Insula 1.46 1.74 
Sub Cortical Gray 
Nuclei 3.53 3.75 
Corpus Callosum 1.06 -- 
Lateral Ventricles 0.55 -- 
Brainsteam 1.98 -- 
Cerebellum 5.58 -- 

 
 

3.3.4. Analysis of normative data from 33 healthy newborns 

 

Labels were propagated to the images of the 33 healthy infants to provide 
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reference sMRI data for each ROI. Table 3.4 shows the mean volumes for all 

ROIs. 

 

Table 3.4: Volumes for all brain regions. 

 Right Hemisphere Left Hemisphere 

Region Mean (SD) / cm3 Mean (SD) / cm3 

Precental 8.87 (1.19) 9 (1.17) 
Frontal Superior 9.96 (1.54) 8.59 (1.26) 
Frontal Superior Orbital 1.51 (0.22) 1.4 (0.22) 
Frontal Middle 11.6 (1.74) 13.27 (1.61) 
Frontal Middle Orbital 2.36 (0.37) 2.56 (0.41) 
Frontal Inferior Opercularis 2.77 (0.36) 2.71 (0.44) 
Frontal Inferior Triangularis 2.89 (0.56) 3.03 (0.57) 
Frontal Inferior Orbital 5.32 (0.78) 4.23 (0.66) 
Rolandic Opercularis 5.37 (0.74) 3.67 (0.54) 
Supplementary Motor Area 5.81 (0.74) 5.33 (0.77) 
Olfactory 1.25 (0.16) 1.31 (0.2) 
Frontal Superior Medial 5.96 (1.04) 6.84 (1.12) 
Frontal Median Orbital 1.47 (0.28) 1.47 (0.3) 
Rectus 1.17 (0.2) 1.13 (0.17) 
Insula 3.67 (0.28) 3.46 (0.28) 
Cingulum Anterior 2.47 (0.27) 2.38 (0.32) 
Cingulum Middle 3.53 (0.4) 3.85 (0.42) 
Cingulum Posterior 0.35 (0.07) 0.44 (0.08) 
Hippocampus 2.08 (0.18) 2.2 (0.18) 
ParaHippocampal 2.58 (0.22) 2.41 (0.23) 
Amygdala 0.65 (0.06) 0.76 (0.06) 
Calcarine 4.26 (0.55) 3.8 (0.57) 
Cuneus 3.72 (0.51) 3.55 (0.47) 
Lingual 7.35 (0.69) 7.83 (0.89) 
Occipital Superior 2.24 (0.34) 3.45 (0.38) 
Occipital Middle 5.7 (0.74) 6.43 (0.71) 
Occipital Inferior 3.34 (0.43) 5.52 (0.53) 
Fusiform 5.73 (0.74) 5.06 (0.54) 
Postcentral 6.82 (0.98) 7.08 (0.91) 
Parietal Superior 5.72 (0.73) 4.65 (0.57) 
Parietal Inferior 2.42 (0.33) 5.75 (0.8) 
SupraMarginal 3.81 (0.54) 2.98 (0.51) 
Angular 3.47 (0.55) 2.25 (0.42) 
Precuneus 7.17 (0.69) 7.14 (1.03) 
Paracentral Lobule 2.17 (0.29) 3.2 (0.45) 
Caudate 1.03 (0.12) 1.1 (0.14) 
Putamen 1.29 (0.13) 1.57 (0.17) 
Pallidum 1.56 (0.24) 1.7 (0.24) 
Thalamus 3.81 (0.24) 3.89 (0.28) 
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Heschl 1.04 (0.24) 0.94 (0.17) 
Temporal Superior 6.47 (0.69) 7.24 (0.69) 
Temporal Pole Superior 2.65 (0.34) 2.91 (0.35) 
Temporal Middle 7.46 (0.82) 8.61 (1.02) 
Temporal Pole Middle 1.53 (0.29) 1.35 (0.23) 
Temporal Inferior 8.24 (0.86) 6.38 (0.78) 
Lateral Ventricle 2.58 (0.6) 2.75 (0.77) 
Midbrain 1.88 (0.11) 1.86 (0.1) 
Pons 0.83 (0.1) 1.03 (0.12) 
Medulla 2.24 (0.2) 2.57 (0.2) 
Cerebellum 11.24 (1.28) 11.17 (1.33) 
Vermis Anterior 0.8 (0.16) 0.82 (0.18) 
Vermis Posterior 2.03 (0.4) 1.97 (0.36) 
Vermis Central 0.69 (0.09) 0.85 (0.13) 
Corpus Callosum 2.63 (0.36) 

 

3.4. Discussion 

 

Using MRI data from 33 healthy newborn infants, we created a neonatal 

brain atlas that parcellates the brain into 107 anatomical regions that can be 

applied to T1w, T2w, dMRI (FA and MD) and tissue probability maps; it also 

contains a symmetric version of all templates. The framework for atlas 

creation was based on temporal propagation of a labelled adult brain atlas 

(SRI24/TZO) via a sequence of MRI templates from childhood to early 

infancy which may make it suitable for modelling human brain growth using a 

consistent set of labels over time. The basis for considering that one-to-one 

mapping of adult to neonatal structures would be feasible stems from the 

consistent observation that human cortical gyrification is established during 

the third trimester of pregnancy, so such that the ‘adult’ configuration is 

present in the healthy infant born at full term, and this can be discerned using 

MRI (277-280).  
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The SRI24/TZO atlas was used because it represents brain anatomy in an 

unbiased population-averaged coordinate system, and at the same time, 

provides a large number of structures in crisp definition so is suitable for label 

propagation (247). An initial temporal registration step from adult to 4.5 years 

was used because we found that no additional benefit was conferred by the 

inclusion of three time points at 15.5, 10.5 and 6.5 years. 

 

There is inverted contrast of WM and GM signal between neonatal and adult 

brain volumes which might suggest that the ideal registration between adult 

and neonatal templates should be performed between neonatal T1w and 

adult T2w volumes. However, the use of intermediate templates avoids 

marked step-wise changes in contrast and it was possible to achieve 

accurate temporal registration using T1w volumes with mutual information as 

the similarity metric (246). The diffeomorphic registration algorithm described 

by (161) was used because of its accuracy as demonstrated in a recent 

comparison of non-rigid registration techniques (159), but other algorithms 

may also be suitable for this framework, including Free-Form Deformation 

(160), Large Deformation Diffeomorphic Metric Mapping (LDDMM) (281), or 

FNIRT (276) among others. For multi-modality template construction, the 

SyGN framework was used, because of its ability to produce population-

specific templates. The main advantage of the method is that it iteratively 

optimizes the template appearance and template shape (261).  

 

The validation strategy we used was both qualitative and quantitative. The 
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requirement for manual editing by an expert according to protocols defined in 

the The Human Brain During the Third Trimester (268) was limited to a small 

number of ROIs. We tested accuracy of temporal registration using cross-

correlation and results demonstrated high accuracy of the registration 

approach (mean CC of 0.93). To confirm accuracy of label propagation we 

used a landmark approach, and found Euclidean distances in an acceptable 

range for landmarks selected to represent the cortex, ventricular system and 

cerebellum. Both intra- and inter- rater variability were low, and the 

magnitude of difference is likely to be acceptable for most applications. 

 

The volumes reported in this cohort of normal infants are of similar 

magnitude and variance to those reported in other smaller studies of healthy 

newborns, albeit at the level of tissue class or  larger regions interest, rather 

than corresponding ROIs (69, 282, 283). We found very similar 

measurements of lobar volumes as a proportion of ICV between ENA33 and 

the UNC atlas, which uses a similar label protocol to ENA33. The small 

differences between the two atlases could be due to the propagation 

approach (in this work more time points were used, and an extra registration 

step is implemented), to differences in template construction method and/or 

to the manual corrections, or they could reflect normal population variation. 

Further studies that include large numbers of participants with sharing of data 

and protocols from multiple centres will be required to determine the extent to 

which small differences in measured values represent population diversity 

versus methodological variation. 
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It should be noted that partial volume effects are not significant for measures 

derived from the structural volumes with voxel size of ~1 mm3 because the 

template is resampled from 0.86 to 1 mm3 (284-286). For acquisitions with 

larger voxel sizes (for example dMRI with 2 mm3) it is possible that partial 

volume effects could confound the extracted metrics.  

 

A beneficial feature of ENA33 is provision of a symmetric version with labels, 

which is novel for a neonatal populations and could have utility for future 

study designs involving neonatal data that require identification of asymmetry 

in the study group. The asymmetry coefficient (S) was <0.05 for all structures 

in the symmetric atlas but ranged from 0.01-0.9 in the asymmetric atlas 

which reflects the wide regional variation and the magnitude of asymmetry in 

the healthy newborn brain. The asymmetric coefficient is not exactly 0 

because the 42 weeks template used for the initialization of the template 

creation process contains a degree of asymmetry that is propagated through 

the process. 

 

The atlas could be used for different voxel-wise studies or multi-modal 

applications that are substantially improved by the use of a specific neonatal 

template, including voxel-based techniques such as TBSS (123, 127), 

Statistical Parametric Mapping (SPM) (284), structural connectivity and 

network analyses or volumetric studies. This atlas can be used to perform 

studies of laterality when it is important to distinguish template asymmetries 
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from those of the study population. 

3.5. Conclusion 

 

In this work, we present a new framework for atlasing the brain in early life. 

The resulting atlas (ENA33) contains 107 regions with high spatial definition 

which can be applied to give anatomical context to T1w, T2w volumes, and 

FA and MD data, whilst also providing tissue probability maps. The method of 

generating the labels of ENA33 makes the atlas consistent with some adult 

atlases, a fact that is very useful in future studies. A symmetric version of the 

atlas is also generated for studies of laterality in the developing brain. The 

atlas is available to the research community by contacting the Brain Images 

of Normal Subjects (BRAINS) repository (http://www.brainsimagebank.ac.uk) 

(287).   
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4.  Combining connectomics with 

along-tract statistics to study 

brain development in preterm 

infants 
 

4.1. Introduction 

As we stated in the introduction, diffusion magnetic resonance imaging is a 

powerful technique for investigating connectivity of neural systems using 

tract-specific and connectomic approaches. The field has evolved rapidly in 

recent years with the development of ‘higher-order’ methods which: enable 

estimation of orientations and relative contributions of fibre populations within 

each voxel; combine anatomical information with dMRI to create biologically 

plausible tractography data and estimates of connectivity (152); combine 

tractography information with tissue microstructural models (288, 289); and 

enable calculation of along-tract water diffusion parameters (290). 

Premature birth is a leading cause of neurocognitive/psychiatric impairment 

across the life course and is closely associated with altered connectivity of 

neural systems including thalamic, cortico-spinal, callosal and cerebellar 

networks (29, 197). It is likely that these changes form part of a more 

generalized ‘disconnectivity’ phenotype (146, 187, 193), which may have 

important clinical implications because network ‘disconnection’ predicts 

reduced information transfer efficiency - a foundational competence for 

cognition in later life (291).  
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Interest in MRI based group-wise analyses of neonates is motivated by the 

need to understand: genetic and environmental risk and resilience factors for 

perinatal brain injuries (29); the role of imaging biomarkers in evaluating 

neuroprotective treatments; and in studies of prognosis and early risk 

stratification (29, 199). Anblagan et al. (29) reported that preterm infants 

exposed to antenatal magnesium sulfate (MgSO4), which is offered to women 

in threatened preterm labour at less than 30 weeks of gestation as it is 

associated with reduced rates of cerebral palsy among offspring (27), had 

slightly lower tract-averaged MD in the splenium of the corpus callosum 

compared with unexposed preterm infants.  

It is challenging to apply advanced tractography frameworks, which have 

largely been developed and / or tested in adults to the neonatal brain due to 

fundamental differences between adult and neonatal structural and dMRI 

data (219). Early studies of the developing brain structural connectome used 

whole-brain tractography approaches in which FA was used to create 

seeding regions and deterministic tensor propagation algorithms to generate 

tracts (146, 193). Recent innovations in developing brain connectomics 

include: probabilistic tracking using a two-compartment partial volume model 

of water molecule diffusion and fitting up to two fibres per voxel (187, 195) or 

incorporation of anatomical information by ROI-to-ROI and remove tracts 

entering into the CSF (195). Most recently, Batalle et al. (131) applied ACT 

(152) with SIFT (289) to reduce the number of false positives. 

In the tract analysis field, Berman et al. (292) performed tract-specific 

measurements of water diffusion parameters by placing ROIs in different 
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slices; Partridge et al. (293) used a similar approach to asses WM maturation 

in the premature brain; Dubois et al. (294) centred all bundles to a common 

origin to establish anatomical correspondence (295); and to demonstrate a 

direct quantitative relationship between the microstructural maturation of the 

optic radiations and the functional development of visual perception during 

early infancy. Geng et al. (151) explored ten fibre tracts, including 

commissural, association and projection tracts, with tract-based analysis and 

investigated how they evolve during the first 2 years of life. This was 

achieved by creating a diffusion tensor MRI atlas and generating 

tractography data in that space after the fibres were back-mapped to each 

subject. This resulted in consistent atlas tract geometry across subjects while 

replacing the diffusion information with values mapped from each subject 

(145).  

Yeatman et al. created the Automated Fiber Quantification method which 

enables calculation of MRI parameter profiles along a tract of interest, and 

showed that children (9-16 years) born preterm have altered tract profiles, 

which correlate with behaviour (296). Finally, Pecheva et al. (297) used tract-

specific analysis (298) to study the effects of age at scanning and prematurity 

at birth on major WM tracts in a large cohort of infants. They described the 

effects of age at scan on water diffusion tensor metrics in nine tracts, 

showing that tract-specific analysis is indeed sensitive to the developmental 

changes. 

Here, we extend the methodology of these studies by combining 

connectomics with along-tract statistics to create a fully automated 
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framework for group-wise comparisons of neonates. To do this we used the 

ACT framework (152) adapted to neonates with age-specific segmentation 

and atlasing tools (256, 299). Next, LiFE was applied to optimize the 

tractography data (288), and connectivity matrices constructed to test for 

differences between groups. Finally, regions that showed significant 

differences in a comparison of infants with and without antenatal MgSO4 

exposure were used to seed tracts from one to the other, and along-tract 

statistics were used to compare FA and MD values along the length of the 

tract (290).  

 

4.2. Materials and Methods 

4.2.1. Overview 

The optimized framework for neonatal connectome construction is shown in 

Figure 4.1. The following pipeline was used: denoising (300) and upsampling 

diffusion data, MRtrix (301)  (http://www.mrtrix.org/); skull stripping of 

structural data using ALFA (256) (http://brainsquare.org/); mask propagation 

from the structural data to the diffusion data, NiftyReg (253) 

(http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg/); eddy current correction, 

FSL  (276) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL/) of the diffusion data; bias 

field correction, N4 (257) (http://stnava.github.io/ANTs/) of both modalities; 

EPI distortion and alignment, ANTs (161)  (http://stnava.github.io/ANTs/); 

parcellation and segmentation, the previously created atlas and SEGMA 

(299); constrained spherical deconvolution (302) and ACT (152), MRtrix; 

optimizing tractography, LiFE (288) (https://github.com/francopestilli/life/); 

http://www.mrtrix.org/
http://brainsquare.org/
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL/
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
https://github.com/francopestilli/life
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and connectome construction, MRtrix and the Brain Connectivity Toolbox  

(171) (https://sites.google.com/site/bctnet/).  

Once the connectome data were created, along-tract statistics were used to 

investigate the nature of connectome differences between preterm infants 

exposed to antenatal MgSO4 versus those who were not (290) 

(https://github.com/johncolby/along-tract-stats/wiki/) (Table A1). 

 

https://sites.google.com/site/bctnet/
https://github.com/johncolby/along-tract-stats/wiki


 

97 

 

 

 Figure 4.1: Overview of the neonatal brain connectome framework. 
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Currently, there is not a unique way to derive the structural connectome. 

Multiple approaches exist depending on the study and research group. Some 

of the steps involved are still quite novel to be performed in neonatal 

structural connectivity, for example the denoising, the up-sampling or the bias 

field correction of the diffusion data. Other steps such as skull stripping and 

registration can be performed using several different software packages. The 

post-processing of the tractography is also quite uncommon due to the 

novelty of these approaches/toolboxes. Moreover, this analysis can be 

performed either in the template space or in the subject native space. All 

these different methods are valid and is up to the researcher to make the 

choice of software and different steps involved in the process, taking into 

account the question of interest and the proficiency in the available software 

packages. 

4.2.2. Participants 

65 preterm infants (mean GA at birth 29 weeks and 3 days (29+3), range 

23+2–34+6 weeks) were employed for this study, underwent brain MRI at term 

equivalent age (mean GA 39+7 weeks, range 38–42+5 weeks) (Table 4.1). 

49% of the infants were exposed to MgSO4, the rest were not. 
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* Postnatal sepsis was defined by: 1) positive blood culture growing 

pathogenic bacteria; or 2) blood cultures negative or positive for coagulase 

negative staphylococcus (CoNS) plus generalized signs of infection plus 

physician decision to treat with antibiotics for 5 days or more.  

**Defined as need for supplemental oxygen and/or respiratory support at 36 

weeks' GA 

 

4.2.3. T1-weighted pre-processing 

For each T1w volume, the brain mask was generated by removing non-brain 

tissue and skull using ALFA, a machine-learning based method that was 

evaluated on neonatal MRI data (256), followed by a bias field correction 

using N4 (257). 

 

4.2.4. Diffusion MRI pre-processing 

The first step was to denoise the dMRI data (300, 303) followed by up-

sampling by a factor of 2 to match the resolution of the T1w volumes using 

cubic b-spline interpolation. Following this step, eddy current correction was 

performed using FSL. The first non–diffusion-weighted volume (B0) was set 

Table 4.1: Demographic information for the participants. 

 Infants exposed to 
antenatal MgSO4 
(n=32) 

Infants not exposed 
to antenatal MgSO4 

 (n=33) 

GA birth/weeks 
(mean and range) 

28+4 (26+1 –31+5) 30+1 (23+2 –34+6) 

Birth weight/kg 
(mean and range) 

1.112 (0.815–1.440) 1.199 (0.550–1.540) 

GA at image 
acquisition/weeks 
(mean and range) 

39+4 (38–42+1) 40+2 (38–42+5) 

Weight at image 
acquisition (mean 
and range) 

3.003 (2.460–4.870) 2.777 (2.070–3.780) 

Postnatal sepsis* 13 (40.3%) 14 (42.4%) 

Bronchopulmonary 
dysplasia** 

10 (31.2%) 8 (24.2%) 
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as the target into which the remaining 74 volumes were co-registered (12 

degrees of freedom) using tri-linear interpolation. Diffusion-encoding gradient 

directions were rotated accordingly (304).  

The brain mask was then propagated from the T1w volume with free-forms 

nonrigid registration using default parameters. This was implemented in 

NiftyReg with normalised mutual information as the similarity metric. Finally, 

each dMRI dataset was corrected for bias field inhomogeneity by first 

estimating the inhomogeneity field map from the B0 volume, then applying 

the field map to correct all other volumes. 

 

4.2.5. EPI distortion correction and alignment of both modalities 

To correct the dMRI data for distortions associated with the single-shot spin-

echo EPI acquisition sequence, a registration based method was used (305). 

First, the T1w volume was co-registered (6 degrees of freedom) to the B0 

volume. The B0 volume was then registered to the T1w volume using the 

symmetric image normalization method (SyN) implemented in Advanced 

Normalisation Tools (ANTs, http://stnava.github.io/ANTs/) with a four-level 

multi-resolution scheme that ran until convergence or a fixed (maximum) 

number of iterations was reached. We allowed up to 100 iterations for the 

first 3 levels and 20 iterations at the full resolution, but restricted the 

deformation direction to the phase encoding direction only. Finally, the 

computed transformation was applied to the remaining volumes of the dMRI 

data. There is no need to reorient the diffusion gradient vectors after the EPI 

distortion correction since the underlying directionality of diffusion 

http://stnava.github.io/ANTs
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sensitization is unaffected by the presence of EPI distortions (306). The 

transformation was also applied to the brain mask. All registrations of the EPI 

distortion corrected data used mutual information as a similarity metric (307). 

Maps of FA and MD were then calculated for each subject using FSL DTIFIT 

(276). 

 

4.2.6. Anatomical parcellation and tissue segmentation 

The T1w template of the atlas created in the third chapter was used to 

parcellate the T1w volume of each participant using rigid, affine and SyN 

registration with cross correlation as the registration metric. 

The previously created atlas has 107 ROIs, but for the structural connectivity 

we do not include the WM or CSF ROIs, as we are only focused on the GM 

parcellation. Because of this, the ROIs corresponding to the corpus callosum, 

lateral ventricles, pons, brainstem and medulla oblongata were removed 

resulting in parcellation of 98 ROIs (Table 4.2). 

The ACT framework requires a ‘five-tissue type’ (5TT) file composed of five 

tissue probability maps: cortical GM, deep grey matter (dGM), WM, CSF, 

while the last type is reserved for pathological tissues (n.b. this is an empty 

file in the current study). The main requirement of the 5TT file is that the sum 

of the intensities across all volumes for one voxel should be one. In the 

original implementation (152) the 5TT file is generated based on methods for 

adult segmentations, but these are unsuitable for neonatal data. To generate 

the 5TT segmentation, we used SEGMA (299) which is an automatic 

SEGMentation Approach for human brain MRI, using sliding window and 
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random forests, that provides accurate segmentations across the life course 

(including neonatal period). In summary, a number of manually labelled 

images (k=10) ’uniformly’ distributed in the low-dimensional data space were 

used as training data (256) (the segmentation of the training data is 

documented in the following section); tissue classification was performed 

using a machine learning based label fusion technique. With the training data 

correctly segmented, we proceeded to segment all T1W volumes to create 

the 5TT file and the GMWMI NIfTI volumes for each subject. All tissue 

segmentations were visually inspected and manual editing was not required 

(Figure 4.2).  

 

 

Figure 4.2: Tissue segmentation for ACT.  The first row shows the axial view of the T1w 

volume of a single subject and from left to right overlaid on this T1w volume, the tissue 

probability maps obtained from the segmentation: GM, dGM, WM and CSF. The second row 

shows the same but for the sagittal view and the third for the coronal view. 
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Table 4.2: Anatomical definition of the ROIs of the connectome 

Anatomical Definition Label ID  Anatomical Definition Label ID 

Precentral Left 1 
 

Occipital Superior Right 50 
Precentral Right 2 

 
Occipital Middle Left 51 

Frontal Superior Left 3 
 

Occipital Middle Right 52 
Frontal Superior Right 4 

 
Occipital Inferior Left 53 

Frontal Superior Orbital Left 5 
 

Occipital Inferior Right 54 
Frontal Superior Orbital Right 6 

 
Fusiform Left 55 

Frontal Middle Left 7 
 

Fusiform Right 56 
Frontal Middle Right 8 

 
Postcentral Left 57 

Frontal Middle Orbital Left 9 
 

Postcentral Right 58 
Frontal Middle Orbital Right 10 

 
Parietal Superior Left 59 

Frontal Inferior Opercularis Left 11 
 

Parietal Superior Right 60 
Frontal Inferior Opercularis Right 12 

 
Parietal Inferior Left 61 

Frontal Inferior Triangularis Left 13 
 

Parietal Inferior Right 62 
Frontal Inferior Triangularis Right 14 

 
SupraMarginal Left 63 

Frontal Inferior Orbital Left 15 
 

SupraMarginal Right 64 
Frontal Inferior Orbital Right 16 

 
Angular Left 65 

Rolandic Opercularis Left 17 
 

Angular Right 66 
Rolandic Opercularis Right 18 

 
Precuneus Left 67 

Supplementary Motor Area Left 19 
 

Precuneus Right 68 
Supplementary Motor Area Right 20 

 
Paracentral Lobule Left 69 

Olfactory Left 21 
 

Paracentral Lobule Right 70 
Olfactory Right 22 

 
Caudate Left 71 

Frontal Superior Medial Left 23 
 

Caudate Right 72 
Frontal Superior Medial Right 24 

 
Putamen Left 73 

Frontal Median Orbital Left 25 
 

Putamen Right 74 
Frontal Median Orbital Right 26 

 
Pallidum Left 75 

Rectus Left 27 
 

Pallidum Right 76 
Rectus Right 28 

 
Thalamus Left 77 

Insula Left 29 
 

Thalamus Right 78 
Insula Right 30 

 
Heschl Left 79 

Cingulum Anterior Left 31 
 

Heschl Right 80 
Cingulum Anterior Right 32 

 
Temporal Superior Left 81 

Cingulum Middle Left 33 
 

Temporal Superior Right 82 
Cingulum Middle Right 34 

 
Temporal Pole Superior Left 83 

Cingulum Posterior Left 35 
 

Temporal Pole Superior Right 84 
Cingulum Posterior Right 36 

 
Temporal Middle Left 85 

Hippocampus Left 37 
 

Temporal Middle Right 86 
Hippocampus Right 38 

 
Temporal Pole Middle Left 87 

ParaHippocampal Left 39 
 

Temporal Pole Middle Right 88 
ParaHippocampal Right 40 

 
Temporal Inferior Left 89 

Amygdala Left 41 
 

Temporal Inferior Right 90 
Amygdala Right 42 

 
Cerebellum Left 91 

Calcarine Left 43 
 

Cerebellum Right 92 
Calcarine Right 44 

 
Vermis Anterior Left 93 

Cuneus Left 45 
 

Vermis Anterior Right 94 
Cuneus Right 46 

 
Vermis Posterior Left 95 



 

104 

 

 

4.2.6.1. Tissue segmentation of the training data 

The tissue segmentation for the training data was generated in a semi-

automated way as follows: 

Cortical grey matter. The image was segmented into 10 or more different 

tissue classes using Atropos (308) with KMeans (the number of tissues vary 

depending of the subject) and those that best represent the cortex were 

chosen. The GM of the cerebellum was included in this tissue class. 

Deep grey matter. The sub-cortical structures were obtained via image 

registration of the neonatal atlas created in the third chapter. The following 

regions were merged to create the dGM tissue class: Thalamus, Caudate, 

Putamen and Pallidium. 

Cerebrospinal fluid. This signal class was obtained using the expectation-

maximization (EM) algorithm (222). T1w volumes were first registered non-

linearly to the closest age-matched T1w template from the 4D atlas (205). 

Then, the EM algorithm was used to classify each voxel into a tissue class 

based on voxel intensity information and spatial-based probabilities (258, 

259); after this step segmentations were mapped back into the subject's 

native space.  

White Matter. To create the WM mask, the sum of the segmentations listed 

above was subtracted from the brain mask (256). 

Lingual Left 47 
 

Vermis Posterior Right 96 
Lingual Right 48 

 
Vermis Central Left 97 

Occipital Superior Left 49 
 

Vermis Central Right 98 
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The tissues were then merged to one file and the resulting segmentation 

assessed for anatomical correctness.  

 

4.2.7. Anatomically-constrained tractography 

Finally, the sMRI and dMRI data were preprocessed and aligned. Fibre 

orientation distributions (FOD) were estimated by constrained spherical 

deconvolution (cSD) at each voxel using a harmonic order (𝑙𝑚𝑎𝑥) of 8 (302, 

309). The remaining  ACT parameters were: algorithm iFOD2 (212) with 

seeding at the GMWMI; initial FOD amplitude threshold 0.15 and final 

amplitude 0.1; step size 1 mm; 4 samples per step; maximum curvature per 

step 45°; backtracking and cropping the tracts at the GMWMI. 100,000 tracts 

were generated with a minimum length of 20 mm and maximum length of 200 

mm, which is consistent with previous studies that have used LiFE for 

tractography optimisation (288, 310, 311). The final result can be seen in 

Figure 4.3. 

  

4.2.8. Optimizing connectome: Linear Fascicle Evaluation (LiFE) 

First, all of the tracts not ending in any ROI of the whole brain parcellation 

were removed. Next LiFE was applied to improve the quality of connectomes. 

The method solves a set of simultaneous linear equations to estimate a 

weight for each WM fascicle, which is used to measure the contribution of 

each tract to the final predicted diffusion signal. Only those tracts that make a 

positive contribution to the diffusion MRI data were retained (288). This 
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removes redundant tracts and false positives (312), which can lead to 

unwanted effects on network measures if retained (288, 289, 313). 

To visualize the effect of LiFE on the tractography data, the tract-density 

imaging (TDI) (314) results from one subject is shown before and after the 

application of LiFE in Figure 4.5.  

 

4.2.9. Connectome construction and analysis 

The connectome was constructed by assigning to an edge a weight based on 

the raw number of tracts between regions: 𝑤(𝑒𝑖,𝑗) = 𝑐𝑖,𝑗. where 𝑒𝑖,𝑗 

represents the connection between the nodes i and j; 𝑤(𝑒𝑖,𝑗) is the weight of 

the connection 𝑒𝑖,𝑗; and 𝑐𝑖,𝑗 is the number of tracts between i and j. After, 

connections with less than five tracts were set to 0, resulting in a network 

with a size of 98 × 98 (131, 315) (see Table 4.2 for a list of the ROIs). 

Any implausible tracts traversing from one cortical hemisphere to any 

contralateral subcortical node were discarded (169). All connectivity matrices 

were normalised between 0 and 1. 

The connectomes were separated in two groups: preterms exposed to 

antenatal MgSO4 versus unexposed preterms. The mean and the standard 

deviation were calculated for each connection of each group, and values 

outside the range of mean ± 3 standard deviations were removed. Finally, a 

t-test was applied to each connection and type one error was controlled using 

false discovery rate (FDR) (316). 
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4.2.10. Along-tract statistics 

If a connection showed significant differences between the two groups in the 

previous step we selected the ROIs involved in the altered connection, and 

generated 100 tracts from one ROI to the other. After this we applied LiFE to 

each bundle of tracts generated. Finally, we extracted along-tract information 

(FA and MD); by doing so the path that connects two ROIs is investigated, 

focusing only on the connection that shows differences in tract-counting 

matrices.  

In order to define the spatial location of differences we used methods 

described by Colby et al. (290). In summary the ROI was used to seed the 

tractography, and tracts were included if they terminated in the corresponding 

ROI identified from the connectome analysis (290). For a given tract, tracts 

were reoriented to a common origin, then re-parameterized with cubic B-

splines and resampled, so that each had the same number of points spread 

evenly along its length. The underlying voxel volume was resampled at the 

new vertices, and these values were collapsed across tracts at each 

analogous group of vertices to obtain mean scalar estimates along the tract. 

Once the different scalars were calculated along the tract, statistical 

comparison was performed between both groups using ANOVA implemented 

in R, with adjustment for factors that are known to influence dMRI parameters 

in WM and / or are associated with WM injury: bronchopulmonary dysplasia, 

sepsis, GA at birth and GA at scan. 
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4.3. Results 

4.3.1. Tractography reconstruction 

Figure 4.3 shows zoomed views of cortical and deep GMWMI respectively. 

Streamline terminations are shown as coloured dots. With ACT (Figures 4.3c 

and 4.3d) tracts terminating within WM are rejected and terminations only 

occur at the GMWMI and within the subcortical structures. In considering the 

performance of ACT at the deep GM/WM boundaries, Figure 4.3c shows that 

no tracts terminate within CSF, corpus callosum or internal capsule. 

 

Figure 4.3: Tractography reconstruction with ACT. a) zoomed region of interest at the 

cortical GMWMI, b) zoomed region of interest at the sub-cortical GMWMI, and panels show 

termination of tracts in the subcortical regions (c) or in the cortical GMWMI (d). Streamline 

colours indicate tangent orientation (red: left-right; green: anterior-posterior; blue: inferior-

superior). 
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We assessed the effect of ACT in comparison with FA thresholding as a 

seeding strategy (FA ≥ 0.15 to seed regions and FA ≤ 0.1 to end tracts). The 

rest of parameters were set according the original paper of Smith et al. (152). 

The result can be shown in Figure 4.4, where we used TDI (314) to overlay 

the results of the tractography and the tract termination over the T1w volume 

of the subject represented in Figure 4.3. The FA seeding strategy produces 

terminations inside the WM (figures 4.4c and 4.4g) and also there are several 

parts of WM that are not covered by the tracts due to the low FA in the 

neonatal brain (figures 4.4b and 4.4f). 

 

Figure 4.4: Comparison of seeding strategies. a) and e) different slices of the T1w 

volume of a single subject; b) and f) the TDI created using FA as a seeding strategy; c) and 

g) the map of the tract termination points created using FA as a seeding strategy; d) and h) 

the TDI created using ACT with GMWMI as a seeding strategy; e) and i) the map of the tract 

termination points created using ACT with GMWMI as a seeding strategy. 
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LiFE removed approximately half of the tracts in each subject (Figure 4.5). 

The intensity of the TDI map is determined by the number of fibres per voxel 

(a brighter image means more fibres). Figure 4.5a displays the TDI of a 

subject before the application of LiFE and shows full coverage of the WM but 

with inhomogeneous distribution of tracts; this is corrected in Figure 4.5b (the 

same subject, but after the application of LiFE) which shows the same 

coverage of WM, but with fewer and more uniformly distributed fibres. 

Finally, Figure 4.5c displays the number of fibres before and after the 

application of LiFE and shows that this method removes half of the tracts. 

The proportion of tracts removed by LiFE did not vary as a function of GA at 

birth, or exposure to MgSO4. 
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Figure 4.5: The effect of LiFE optimisation. a) and  b) TDI of a single subject before and 

after the application of LiFE; and c) number of tracts depending of the length before and after 

optimization. 

 

4.3.2. Structural connectivity analysis  

The splenium of the corpus callosum, connecting occipital middle left and 

right regions was the only retained connection that differed between MgSO4 

exposed and non-exposed groups, after adjustment for GA at scan, GA at 

birth, proven sepsis and bronchopulmonary dysplasia; FDR corrected (Figure 

4.6). 
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The difference in the number of streamlines could be due to several factors. 

The splenium is an area where the fibers are well oriented, and generally well 

myelinated. Is it difficult to make an assumption of the reason behind this 

effect. For example a difference in the FA could be due to several factors 

such as axonal density or different amount of extracellular space. More 

advanced and complementary images are needed to make further 

interpretations. 

 

Figure 4.6: Effect of antenatal MgSO4 exposure on the connectome at term equivalent 

age. Connectome and chord diagram a) Axial, coronal and sagittal view of the brain surface 

and nodes with the connection that shows differences between groups (p < 0.05 corrected), 

generated with BrainNet (317) (https://www.nitrc.org/projects/bnv/); and b) Chord diagram of 

the differences between groups (p < 0.05 corrected), generated with Circlize (318) 

(https://cran.r-project.org/web/packages/circlize/index.html). 

 

 

 

 

https://www.nitrc.org/projects/bnv/
https://cran.r-project.org/web/packages/circlize/index.html
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4.3.3. Along-tract statistics 

Having identified a group difference in structural connectivity in the splenium 

(increased number of streamlines in the MgSO4 exposed group), tracts that 

connected one ROI (occipital middle left) with the other ROI (occipital middle 

right) were calculated, and FA and MD along the path was plotted for each 

group (Figure 4.7). There were significant differences between groups in the 

FA and the MD (the inferior black line in each graph shows where the 

differences were located), and the squared area shows the tract location 

where there were differences in both metrics. There was no group difference 

in tract averaged mean for either metric. 
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Figure 4.7: FA and MD plotted along the splenium of the corpus callosum, according 

to antenatal MgSO4 exposure. Along-tract estimates from individual subjects are displayed 

semi-transparently in the background (line width encodes the relative number of streamlines, 

a reference for the numbers is in the figure key), and are overlaid with locally weighted 

smooth estimates of the group means (± pointwise 95% confidence range). The black bars 

at the bottom of each graph indicate the regions with a significant difference between 

groups. Squared in green is the area that presents differences in FA and MD. 
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Groupwise differences can be represented in anatomic space by plotting the 

p-values of mean difference in along-tract statistics overlaid on a 

representative image. Figures 4.8a and 4.8b show the p-value maps overlaid 

on a mean tract of one representative subject. Figures 4.8c and 4.8d show 

also the p-value, thresholded to visualise values < 0.05. Finally, Figures 4.8e 

and 4.8f shows the effect size. 
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Figure 4.8: Along-tract statistics of the effect of antenatal MgSO4 in the splenium of 

the corpus callosum. a) Along-tract p-value maps of FA values overlaid on the mean tract 

of a representative subject; b) along-tract p-value maps of MD values overlaid on the mean 

tract of a representative subject a); c) and d) show visualisation of p-values <0.05; e) and f) 

along-tract effect size of FA and MD values overlaid on the mean tract of a representative 

subject (for FA, cool colours indicate higher FA in MgSO4 exposed infants, and for MD hot 

colours indicate lower values in infants exposed to MgSO4). 

 

4.4. Discussion 

We present a framework for neonatal connectome construction and tract 

analysis based on the use of learning based approaches and age-specific 
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atlases. It allows the incorporation of precise anatomical information to 

constrain streamline generation and provides detailed localised information 

about variations in FA and MD in regions of altered structural connectivity. 

We used the ACT framework with seeding at the GMWMI because it 

improves the biological plausibility of streamline generation, especially when 

a method to optimize the tractography is added (288, 289, 313). We found 

that connectivity of the splenium was altered in infants exposed to antenatal 

MgSO4 versus those who were not which replicates a previous observation 

made using probabilistic neighbourhood tractography (PNT) (29, 319), and 

we provide additional information about the anatomic localisation of 

differences in FA and MD using along-tract statistics (290). 

The main advantage of the proposed framework is a fully automated analytic 

process to construct the neonatal structrual connectome using age-specific 

and learning based tools in combination with along-tract statistics. Other 

advantages of this approach are that it can be implemented using any single-

shell dMRI data with one structural volume of any contrast because of the 

EPI distortion correction strategy used (assuming a structural atlas is 

available for the age group of interest (204) and that assumptions required 

for ACT are met). Because generic approaches were used for skull-stripping 

and tissue segmentation, it is possible to generalize the framework for 

modelling the connectome longitudinally and in other age groups as long as 

an age-appropriate atlas is used (204). This may be useful for studying 

typical development, disease progression or treatment effects over the life 

course. 
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In the proposed framework water diffusion MRI data were up-sampled to T1w 

space. Previous studies have shown the benefits of this step, which include 

improved registration (320) and increased resolution to improve tractography 

(321). For our dataset there is another benefit: by matching the resolution of 

the T1w volume, it is possible to perform EPI distortion correction while 

retaining the relatively high resolution of structural data. To have both 

modalities (T1w and dMRI) correctly aligned and without distortions is a 

requirement of ACT.  

We considered that a seeding strategy/tracking constraint based on 

anatomical information (GMWMI) would add value for streamline generation 

in the developing brain because: it overcomes the need for arbitrary FA 

thresholding for seeding; relatively lower dMRI resolution in neonatal imaging 

can lead to partial volume artefact at structures adjacent to CSF, which can 

lead to voxels at the CSF/tissue interface having an FA value > 0.1 or 0.15 

thereby allowing tracts to pass through the CSF, and finally some WM 

regions present very low FA in the neonate and this can lead to missing 

tracts and connections. The application of LiFE, which is designed to remove 

false positives and redundant tracts, removed around half the tracts and this 

appeared to improve the quality of resulting connectomes (288, 322). It is 

important to note that if there are missing tracts, LiFE and other methods for 

optimizing tractography (288, 289, 313) will not correct the problem because 

they are not capable of adding tracts (311). 

To perform connectivity analysis, we chose a strategy based on outlier 

removal: only connections with at least 5 tracts were counted, and after 
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separating the different groups connection values outside the range of mean 

± 3 standard deviations were removed. The rationale for doing this is to 

explore as many connections as possible, while retaining interest in 

connections that could appear in one group only. This approach contrasts 

with standard backbone network or grid network methods for filtering 

networks, which take account of the whole group, not different sub-groups. 

Finally, we tracked fibres from the connections that showed differences for 

along-tract statistics, which enabled precise anatomic location of alterations 

in FA and MD values (290). To our knowledge, this is the first use of 

connectomics and along-tract statistics in an automated unified framework for 

groupwise comparisons.  

To explore the clinical utility of the framework, we tested its efficacy for 

detecting an expected group-wise difference: specifically, we previously 

reported altered tract averaged MD in the splenium of the corpus callosum of 

preterm neonates exposed to antenatal MgSO4 versus unexposed neonates 

using PNT (29). The present results are consistent in that we found altered 

connectivity in the splenium of the corpus callosum. Along-tract statistics 

revealed significantly increased FA and reduced MD at local regions along 

the splenium of the corpus callosum in infants exposed to antenatal MgSO4 

compared with unexposed infants, which is consistent with previous work in 

which a different technology was used (29). 

There are some limitations to the framework. First, it is computationally 

expensive due to up-sampling of dMRI data, the application of LiFE, and the 

different registration steps; and second it could be refined further by using 
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different EPI distortion correction strategies, or with additional pre-processing 

steps such as removing Gibbs-ringing artefact (323). A limitation of the 

experiment presented is the low b-value of the acquired data. It is possible 

that results could be further improved with the use of high b-value or multi-

shell acquisitions, which would be expected to resolve crossing fibres more 

effectively and allow for study of other scalar parameters along the tract (e.g. 

NODDI (139)). 

 

4.5. Conclusion 

In conclusion, we present a fully automated framework to construct the 

developing brain connectome using age-specific algorithms for brain 

extraction, tissue segmentation and labelling while incorporating anatomical 

information (ACT and GMWMI seeding) optimized with LiFE, and along-tract 

statistics. We demonstrate the utility of the framework for studying the effect 

of neuroprotective treatment strategies in preterm infants. 
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5.  Early breast milk exposure 

modifies brain connectivity in 

preterm infants 
 

5.1.  Introduction 

Preterm birth is strongly associated with an MRI phenotype that includes 

altered structural connectivity of developing neural systems, structural 

alteration in dGM and GM, and long term neurocognitive impairment (131, 

147, 199, 324, 325). Co-morbidities of preterm birth, genetic factors, and 

environmental exposures contribute to WM disease but they do not explain 

fully the risks for atypical brain development and adverse outcome (69, 126, 

127, 214, 326, 327). 

Nutritional factors may play an important role in preterm brain development. 

For example, optimal protein and energy intakes in the first 28 days after 

preterm birth are associated with increased brain growth (328), and improved 

WM microstructural development at term equivalent age and 

neurodevelopmental performance at 18-months (31, 329).  

Breastfeeding, when compared with formula feeding, is associated with 

increased performance in intelligence testing among the general population, 

and the effect may be enhanced in low birthweight infants (34-38). In a recent 

meta-analysis of studies that controlled for maternal intelligence, which is a 

recognised confounder of childhood cognition, breast feeding remained 

associated with a gain in performance in IQ testing (330). Furthermore, 
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breast milk appears to have lasting impact on cognition with improved 

performance at school, during adolescence and through to adulthood (331, 

332). MRI studies of children and adolescents report that breast milk feed in 

infancy is associated with increased white and GM volumes (37, 333), 

increased cortical thickness (334) and improved WM microstructure (335) 

when compared with formula feeding. However, the extent to which 

observations from the general population can be extrapolated to preterm 

infants is unknown, and this leaves uncertainty about the effect of breast milk 

on preterm brain development, and the timing, dose and duration of breast 

milk that might confer benefit. 

We combined nutritional data with brain MRI to test the hypothesis that 

exposure to breast milk enhances early brain development in preterm infants. 

We investigated the influence of breast milk intake during neonatal care on a 

comprehensive set of measures of brain development that are based on the 

MRI phenotype of preterm brain injury (69, 131, 193, 324). We combined 

sMR and dMRI to perform ACT (152) with SIFT (289) to construct the 

structural connectome, and compared connectomes using global network 

measures and edge-wise values using Network-based Statistics (NBS). We 

used TBSS to calculate voxel wise differences in FA, MD, AD, and RD 

across the WM skeleton, and used optimized algorithms for brain extraction 

and tissue classification to measure global and local brain tissue volumes 

(123, 127). 
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5.2.           Subjects and Methods 

5.2.1.         Participants 

Participants were preterm infants delivered at ≤ 33 weeks who received care 

at the Royal Infirmary of Edinburgh and had brain MRI performed at term-

equivalent age as part of a longitudinal study designed to investigate the 

effects of preterm birth on brain structure and outcome.  

Daily nutritional intake was collected from birth until discharge home from the 

neonatal unit using electronic patient records. Breast milk exposure was 

defined as the proportion of in-patient days receiving exclusive breast milk, 

categorized as ≥ 75% and ≥ 90% of days of in-patient care when exclusive 

breast milk was given. 

The nutritional management of all participants conformed to following 

principles. Infants with birth weight < 1500 g began parenteral nutrition upon 

admission to neonatal care. This was delivered using a standard solution 

(Scottish Neonatal Parenteral Nutrition 2.4 g protein/100 ml, ITH Pharma, 

London), commencing at 100 ml/kg/day if birth weight < 1000 g and 75 

ml/kg/day if birthweight was 1000-1500 g. This was increased to a maximum 

of 150 ml/kg/day in 25 ml/kg/day increments every 24 hours. Fat and fat-

soluble vitamins were provided using Intralipid 20% emulsion, which was 

commenced within 24 hours of admission at 1 g/kg/day, increasing to 2 

g/kg/day on day 2 and 3 g/kg/day on day 3.  

Expression of breast milk was encouraged immediately after delivery and 

colostrum was given as soon as it became available. Enteral feeds were 
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commenced at 12 ml/kg/day on day one and incremented by 30 ml/kg/day as 

standard. This increment was reduced to 18 ml/kg/day in babies identified as 

at high risk of developing necrotising enterocolitis (< 1000 g, IUGR, absent or 

reversed umbilical artery end diastolic flow doppler). If there was insufficient 

maternal expressed breast milk by 48 hours of age, donor expressed breast 

milk was given to supplement maternal milk. Once infants had reached 120 

ml/kg/day of enteral feeds, parenteral nutrition was stopped. Feeds continued 

to increment to a maximum volume of 180-200 ml/kg/day. Human milk 

fortifier (HMF) (Cow & Gate Nutriprem Human Milk Fortifier, Nutricia) was 

added to breast milk if weight gain remained sub-optimal despite 14 days of 

maximal volume breast milk (180-200 ml/kg/day). If mothers chose not to 

express milk or there was insufficient breast milk to meet the requirements of 

the infant beyond 34 weeks, donor expressed breast milk was replaced with 

preterm formula. All infants received multivitamins from day 7 of life and iron 

supplementation from day 42.  

Bronchopulmonary dysplasia (BPD) was defined as the requirement for 

supplemental oxygen at 36 weeks corrected gestational age. All infants had 

placental histopathology performed and Histological chorioamnionitis (HCA) 

was defined using an established system (214).  

Postnatal somatic growth was described as the difference between 

birthweight z-score and weight at scan z-score, calculated using 

INTERGROWTH-21st reference standards for preterm infants (336). 
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5.2.2.       Structural connectivity  

An overview of the complete framework for the network construction can be 

seen in Figure 5.1. This framework is mainly the one created in the previous 

chapter (Table A1). 

 

Figure 5.1. Overview of the structural connectome creation framework.  

 

5.2.2.1.     Preprocessing 

Basically, the preprocessing was the same as explained in the previous 

chapter. The dMRI volumes underwent a denoising process (300, 303) 

followed by up-sampling by a factor of 2 to match the resolution of the T1w 

volumes using cubic b-spline interpolation (320). Then, the dMRI data were 

corrected for head motion and eddy current distortions (337) with the 
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correspondent vector rotation, skull-stripped (338) (with manual editing) and 

corrected for bias field inhomogeneity (257). The T1w volumes were skull-

stripped (256) and corrected for bias field inhomogeneities (257). Finally, the 

T1w volumes were co-registered to the first B0 EPI volumes for each subject 

and dMRI data were corrected for EPI distortions by non-rigidly registering 

the EPI volumes to the co-registered T1w volumes, restricting the registration 

to the phase encoding direction (305, 306). At the end, for each voxel, the 

water diffusion tensor was estimated using the weighted least-squares 

method with DTIFIT (337). FA, MD, AD and RD maps were then generated 

for every subject. 

5.2.2.2.     Tissue segmentation and Parcellation 

The same parcellation and segmentation methods used in the previous 

chapter, were used. 

5.2.2.3.     Tractography 

Tractography was generated using constrained spherical deconvolution 

(cSD) (302, 339). The FOD was calculated with a maximum spherical 

harmonic degree  (𝑙𝑚𝑎𝑥) of 8 (309). We used ACT (152) with the iFOD2 

algorithm (212). The ACT parameters were: seeding at the GMWMI; 

minimum streamline length of 20 mm and maximum length of 200 mm (183, 

191); the remainder of parameters were used as default (adjusted for 

upsampled data (152)). 10 million tracts were generated and SIFT was 

applied to reduce the number of tracts to 2 million. This reduces the 
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construction bias of the tractogram and improves the biological accuracy and 

interpretability of structural connectivity between regions (289). 

5.2.2.4.     Network Construction 

 

The connectomes were constructed following the same process explained in 

the previous chapter, resulting also in a matrix of 98x98. Note that the 

networks were not corrected for the inverse length of the paths, since this 

correction is not appropriate for tractograms calculated using a GMWMI 

seeding strategy (340). We refer to those matrices as streamline-weighted 

matrices (𝑀𝑤−𝑁𝑂𝑆). 

In addition, FA-weighted connectomes were also constructed by using the 

mean FA computed over the 𝑐𝑖,𝑗 streamlines as an edge weight: 𝑤(𝑒𝑖,𝑗) =

1

𝑐𝑖,𝑗
∑ 𝐹𝐴̅̅ ̅̅

𝑛
𝑛=𝑐𝑖,𝑗

𝑛=1 . Where i, j, 𝑒𝑖,𝑗 , 𝑤(𝑒𝑖,𝑗) and 𝑐𝑖,𝑗are defined as before; n is each 

streamline connecting i and j; and 𝐹𝐴̅̅ ̅̅
𝑛 is the mean FA of the tract n. This 

weight is known as the WM tract “integrity” (146, 194). We refer to those 

matrices as FA-weighted matrices (𝑀𝑤−𝐹𝐴). 

Finally, each 𝑀𝑤−𝑁𝑂𝑆 was binarized and used to filter the correspondent 

𝑀𝑤−𝐹𝐴. The resulting 𝑀𝑤−𝐹𝐴 connectomes were not normalised because the 

FA values for a region-pair connection are averaged across all its 

𝑐𝑖,𝑗streamlines, making it invariant to the number of tractography seeds used 

(146). 
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5.2.2.5.     Edge-wise comparison 

 

The Mw−NOS were thresholded keeping only the connections common to at 

least 2/3 of the subjects (341), and the threshold was then applied to the 

Mw−FA. 

5.2.2.6.     Network metrics and analysis 

We calculated 5 network parameters: Global efficiency (GE), local efficiency 

(LE), cluster coefficient (CC), characteristic path length (CPL) and small-

worldness (SW). 

The CPL is defined as the average shortest path length between all pairs of 

nodes in the network and is the most commonly used measure of functional 

integration (342) and the GE is a reated measure defined as the average 

inverse shortest path length (343). the CPL is primarily influenced by long 

paths, while the GE is primarily influenced by short paths. Some authors 

have argued that this may make the GE a superior measure of integration 

(344).  

Simple measures of segregation are based on the number of triangles in the 

network, with a high number of triangles implying segregation. The CC is the 

fraction of triangles around an individual node and is equivalent to the 

fraction of the node's neighbors that are also neighbors of each other. The 

LE is the GE computed on node neighborhoods, and is related to the CC. 
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A SW network is a type of network in which most nodes are not neighbors of 

one another, but the neighbors of any given node are likely to be neighbors 

of each other and most nodes can be reached from every other node by a 

small number of hops or steps (342). This is calculated by dividing the 

normalized CC between the normalized CPL. 

A graphical representation can be seen in Figure 5.2. For a detailed 

explanation and the formulation of the metrics, see Rubinov and Sporns 

(2010). All the metrics were implemented in the Brain Connectivity Toolbox 

(brain-connectivity-toolbox.net) (171). 

 

Figure 5.2. Graphical overview of the network metrics. A) The representation of CC, CPL 

and GE in a schematic network; B) How the increasing of the LE affects to a network, C) 

How a network goes to regular to random, passing to a SW network by increasing the 

randomness of its connections. Adapted from (171, 342, 345). 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
file:///C:/Users/Manuel/Desktop/ManuelBlesa_thesis_CORRECTIONS.docx%23_ENREF_50
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The connectivity matrices do not have the same density (sparsity, e.g. the 

number of connections in each connectivity matrix differs, due first to the 

removal of self-connections and second to the fact that not all the streamlines 

reach the different ROIs (340, 346). The density affects certain global 

topological parameters and comparisons at constant density make it possible 

to find differences related to the topological reorganization of links (347). To 

correct for this, each 𝑀𝑤−𝑁𝑂𝑆 was thresholded using its density in small steps 

from 0.02 to 0.5 in intervals of 0.02 (131, 344, 348). After this the matrix was 

binarized and used as a threshold to filter the 𝑀𝑤−𝐹𝐴 for each subject (131). 

5.2.3. Tract-based Spatial Statistics 

TBSS analysis (123) was performed using a pipeline that was optimized for 

neonatal dMRI data (127). Using the most representative subject of the 

cohort as a target, an average FA map and mean FA skeleton (thresholded 

at FA > 0.15) were created from the aligned data representing the main WM 

tracts common to all subjects. RD, AD and MD were projected onto the FA 

skeleton for voxel wise comparisons.  

5.2.4. Volumetric analysis 

The brain tissue was separated from non-brain tissue using ALFA (256), and 

a brain mask was created. Volumes were corrected for field inhomogeneity 

using the N4 method (257) and were segmented using SEGMA (299). Every 

brain volume was segmented into: brainstem, cerebellum, cortical GM, CSF, 

dGM and WM (Figure 5.3). Volumes were calculated for each individual 

tissue type, and total brain tissue volume was calculated as the sum of all 

compartments with the exception of CSF.  
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Figure 5.3:  Tissue segmentations. From left to right: a single subject and the 

corresponding tissue segmentations for cortical gray matter, sub-cortical gray matter, WM, 

CSF and whole brain. 

5.2.5 Exploratory analysis of dose effect 

In exploratory analyses, we considered the effect of breast milk dose in 

group-wise comparisons using proportional daily breast milk intake threshold 

of ≥ 90%.  

 

5.2.6. Statistics 

Edge-wise comparison of connectivity matrices was performed using NBS 

(172) with a t-statistic exceeding a threshold of 3 (349). Groupwise difference 

in breast milk exposure in the five network measures was investigated using 

ANOVA (in the original matrices and also at each level of density). For TBSS,  

group comparisons were performed with FSL’s Randomise tool using a 

general linear univariate model (350), with family-wise error correction for 

multiple comparisons using threshold-free cluster enhancement (TFCE) with 

a significance level of  p < 0.05 (351). For volumetric comparisons group-wise 

analyses were performed using ANOVA. In all analyses post-menstrual age 

(PMA) at birth, PMA at image acquisition, BPD and exposure to 

chorioamnionitis were entered as covariates. 
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5.3.           Results 

5.3.1         Baseline characteristics 
 

Forty-seven participants were studied. 27 received exclusive breastmilk 

feeds for ≥ 75% of their neonatal admission, and 20 received exclusive 

breastmilk feeds for <75% of their stay (Table 5.1). The demographic and 

clinical features of the population for the ≥ 90% exclusive breastmilk 

threshold are shown in Table 5.2. 

 

Table 5.1: Demographic and clinical features of study participants (75%threshold) 

 <75% 
exclusive BM 

(n=20) 
 

≥75% 

exclusive BM 
(n=27) 

p 
value 

Mean GA at birth/weeks (range) 29+3 (23+2-33+0) 29+3 (26+1-32+6) 0.97 

M:F ratio 8:12 12:15 0.76 

Mean birthweight/g (range) 1121 (550- 
1450) 

1160 (815- 
1465) 

0.55 

Mean birthweight z-score -0.56 -0.37 0.55 

Mean GA at scan/weeks (range) 39+5 (38+0-42+2) 39+4 (38+0-42+0) 0.83 

Mean weight at scan/g (range) 2838 (2160- 
3480) 

2862 (2070- 
4870) 

0.87 

Mean weight at scan z-score -1.06 -1.01 0.88 

Difference in mean weight z-
score from birth to scan 

-0.43 -0.65 0.32 

Proportion of infants with BPD 
(%) 

4/20 (20) 9/27 (33) 0.71 

Proportion of infants with HCA 
(%) 

6/20 (30) 9/27 (33) 0.81 

Mean number of days in 
neonatal unit (range) 

62 (19-151) 59 (26-94) 0.68 

Mean number of TPN days 
(range) 

9 (0-30) 9 (0-30) 0.90 

Mean Urea concentration at 32 
weeks GA/mmol/L (range) 

2.5 (1.4-3.9) 2.7 (1.4-7.3) 0.64 
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Median number of exclusive 
formula days (range) 

12 (0-107) 0 (0-10) <0.01 

Median number of exclusive 
breastmilk days (range) 

19 (0-79) 57 (24-90) <0.01 

Median number of HMF days 
(range) 

0 (0-58) 18 (0-62) <0.01 

Mean proportion of exclusive 
breastmilk days with 
supplemental DEBM, % (range) 

18 (0-100) 3 (0-30) <0.01 

 
 

 

 

Table 5.2: Demographic and clinical features of study participants (90%threshold) 

 <90% 
exclusive BM 

(n=24) 
 

≥90% 

exclusive BM 
(n=23) 

P 
value 

Mean GA at birth/weeks (range) 29+4 (23+2-
33+0) 

29+1 (26+1-
32+6) 

0.47 

M:F ratio 14:10 13:10 0.90 

Mean birthweight/g (range) 1130 (550-
1450) 

1157 (815-
1500) 

0.67 

Mean birthweight z-score -0.66 -0.23 0.13 

Mean GA at scan/weeks (range) 40+0 (38+0-
42+2) 

39+2 (38+0-
42+0) 

0.13 

Mean weight at scan/g (range) 2823 (2070-
3780) 

2882 (2230-
4870) 

0.69 

Mean weight at scan z-score -1.17 -0.88 0.39 

Difference in mean weight z-
score from birth to scan 

-0.46 -0.66 0.38 

Proportion of infants with BPD 
(%) 

5/24 8/23 0.29 

Proportion of infants with HCA 
(%) 

8/24 7/23 0.83 

Mean number of days in 
neonatal unit (range) 

61 (19-151) 59 (26-94) 0.72 

Mean number of TPN days 
(range) 

11 (0-30) 8 (0-16) 0.14 

Mean Urea concentration at 32 
weeks GA (mmol/L) 

2.6 (1.4-6.0) 2.6 (1.3-7.3) 0.10 

Median number of exclusive 
formula days (range) 

11 (0-107) 0 (0) <0.01 

Median number of exclusive 
breastmilk days (range) 

24 (0-79) 60 (24-90) <0.01 
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Median number of HMF days 
(range) 

0 (0-58) 20 (0-62) <0.01 

Mean proportion of exclusive 
breastmilk days with 
supplemental DEBM, % (range) 

15 (0-100) 4 (0-30) 0.07 

 

5.3.2.        Edge-wise connectome comparison 

A sub-network of 𝑀𝑤−𝐹𝐴 shows increased FA in infants who received ≥ 75% 

of exclusive breast milk feeds compared to those who did not (p=0.0386, 

NBS) (Figure 5.4a); the complexity of the sub-network increased by the 

incorporation of more nodes and edges in infants who received ≥ 90% of 

exclusive breast milk feeds (p=0.0086, NBS) (Figure 5.4b). This sub-network 

included frontal to cingulate, frontal to precuneus and inter-hemispheric 

connections; detailed anatomical descriptions of the regions of interest are 

listed in Table 4.2. 
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Figure 5.4: Sub-network showing differences in the FA-weighted connectome for the 

two thresholds: ≥ 75% (a) and ≥ 90% (b). Intra-hemispheric connections are shown in red, 

and inter-hemispheric connections in blue. 

  

5.3.3.        Network analysis 

There were no statistically significant differences in global network metrics for 

𝑀𝑤−𝐹𝐴 at either milk intake threshold after FDR correction (Figure 5.5), nor 

were there significant differences in network measures corrected for density 

(Figure 5.6). 
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Figure 5.5: Plot of the different network metrics for the  𝑴𝒘−𝑭𝑨 connectivity matrices. 

In each metric both thresholds are represented, namely ≥ 75% and ≥ 90%. For each 

threshold the box on the left represents the subjects with the lower breast milk dose and the 

box on the right the higher dose.  The red line represents the mean; the red dotted line 

represents the median; the red box the 95% interval confidence of the mean; and the blue 

box the interval between the mean ± 1 standard deviation. 
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Figure 5.6: Plot of the different network metrics, as a function of the density. For the 

milk thresholds of 75% and 90%. 
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5.3.4.        Tract-based spatial statistics 

There were significant differences in water diffusion tensor parameters in 

major WM tracts associated with breast milk exposure. Specifically, in the 

group with ≥ 75% days of exclusive breast milk feeds, FA was higher in the 

splenium of corpus callosum, cingulum cingulate gyri, centrum semiovale, 

corticospinal tracts, the arcuate fasciculi and the posterior limbs of internal 

capsule. These differences were more widespread and symmetrical at the ≥ 

90% exclusive breast milk days threshold. Infants who received ≥ 90% days 

exclusive breastmilk feeds had lower MD and RD (figure 5.7). 
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Figure 5.7: TBSS results showing differences in FA for each of the breast milk 

thresholds: 75% and 90%. Differences in MD and RD are highlighted in infants who 

received < 90% days exclusive breast milk. Group 1: higher than the specified threshold of 

exclusive breast milk and group 2: lower than the specified threshold of exclusive breast 

milk. 

  

5.3.5.        Volumetric Analysis 

There were no significant differences in brain volumes between preterm 

infants who received ≥ 75% exclusive breast milk and those who received < 

75% breast milk feeds (FDR corrected). The mean (SD) for the total brain 

tissue volume of the group with ≥ 75% breast milk exposure was 359.34 ml 

(38.76 ml), while for the group with < 75% breast milk exposure was 361.56 

ml (34.65 ml). Values for tissue compartments and CSF are shown in Table 
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5.3. There were no significant differences either in brain volumes between 

preterm infants who received ≥ 90% exclusive breast milk and those who 

received < 90% breast milk feeds. 

Table 5.3: Mean (SD) brain tissue and CSF volumes at term equivalent age. 

 Mean volume (SD) / 
ml (≥75% exclusive 

breastmilk) 

Mean volume (SD) / 
ml        (< 75% 

exclusive breastmilk) 

p-
value 

Cortical grey matter 169.81 (23.39) 170.64 (19.10) 0.87 

Sub-cortical grey 
matter 

25.99 (3.67) 25.52 (3.21) 0.58 

White matter 135.17 (14.01) 136.27 (12.95) 0.79 

Cerebrospinal fluid 75.42 (16.51) 81.50 (16.26) 0.16 

Brainstem 5.07 (0.87) 5.30 (0.62) 0.28 

Cerebellum 23.29 (3.28) 23.82 (3.21) 0.47 

Whole Brain 359.34 (38.76) 361.56 (34.66) 0.81 

 

5.4. Discussion 

By combining nutritional data with brain MRI markers of preterm brain injury, 

we have shown that greater exposure to breast milk following preterm birth is 

associated with improved WM microstructure at term-equivalent age. We 

found differences in sub-networks of the FA-weighted connectome and 

increased FA within WM tracts of infants who received exclusive breast milk 

feeds for ≥ 75% days of neonatal in-patient care compared with infants who 

received exclusive breast milk for < 75% of days. These effects showed a 

dose-dependent relationship with breast milk exposure and were 

independent of known predictors of preterm brain injury including gestational 

age at birth, chorioamnionitis, and BPD. The observed effects are unlikely to 

be attributable to parenteral nutrition because exposure to this did not differ 

significantly between the groups. 
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Our data are consistent with neurodevelopmental outcome studies of preterm 

infants that report improved neurodevelopmental outcomes in association 

with breast feeding (35-38, 352). However, when outcomes are assessed in 

early childhood the effects of infant nutrition and other potential confounders 

limit inference about neonatal nutritional exposures. By parsing the complex 

behavioural trait of neurodevelopment to an intermediate phenotype (MRI 

markers of development at term equivalent age) we have shown that breast 

milk intake prior to discharge from hospital is critically important for optimal 

brain development after preterm birth. The results are consistent with 

observations that early life parenteral and enteral nutritional intake 

immediately after preterm birth is associated with altered brain development 

at term equivalent age (31, 329), but these data focus attention specifically 

on the role of breast milk. Breast milk is a complex nutritional substrate that 

has nutritional advantages over formula milk for promoting brain 

development. These include favourable composition and absorption of fats 

and protein, improved bioavailability of trace elements, and the presence of 

non-nutrient factors (milk oligosaccharides, immunoglobulins, lactoferrin and 

lysozymes) that may confer direct or indirect benefit (353, 354). Finally, the 

infant gut microbiome is affected by feeding practice (355); modifications to 

the gut-brain axis via microbiome are known to influence brain development 

and behaviour in mice (356) and to predict cognitive performance in infants at 

2 years of age (357). 

The main strength of the study is the comprehensive assessment of brain 

development using three measures that describe the encephalopathy of 
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prematurity: connectivity, tract microstructure, and local and global brain 

volumes. We were also able to explore dose effects.  We evaluated infants at 

term equivalent age so are able to rule out confounding by nutrition 

throughout infancy and socio-economic features of the home environment. 

Finally, we used a pragmatic measure of breast milk exposure that is 

available to healthcare providers and parents from routinely recorded data, 

and does not require additional measurements.  

A limitation of our work is that we were not able to investigate the effect of 

common genetic variation in fatty acid metabolism, which may interact with 

breast milk exposure to influence childhood cognition (358, 359) and WM 

development (326, 360); nor were we able to investigate genetic variants of 

the microglial inflammatory response linked to preterm WMI (327). Secondly, 

we performed a cross-sectional assessment at term equivalent age so could 

not investigate the putative benefits to the preterm brain of longer exposure 

to exclusive breast feeding through infancy. The sample size was not 

sufficient to study the effect of donor expressed breast milk or HMF on brain 

development. 

We used cSD with probabilistic tracking because it is beneficial over standard 

diffusion tensor reconstructions for tractography in paediatric brain, even with 

low b-values (213). ACT and SIFT were used to reduce bias in the 

tractography reconstruction (152, 289, 340, 361), recent studies had shown 

this potential in the developing brain (131, 362). 𝑀𝑤−𝐹𝐴 were chosen 

because FA is established as a reliable marker of brain development (127, 

146, 193), but new models that rely on high b-value acquisitions to better 
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characterize crossing fibres within WM may provide additional insights into 

the effect of breast milk on early brain development (139). 

5.5. Conclusion 

In summary, these data show that WM tract microstructure and cerebral 

connectivity of preterm infants are increased at term equivalent age in 

association with higher exposure to breast milk.  
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6.      Discussion 
 

6.1. Main conclusions of the study 

The main aim of this thesis was to create an optimized framework for 

structural connectivity creation, specially designed for the first wave of the 

TEBC. Going through all the steps involved in the process, first the 

parcellation, by creating an atlas derived from the cohort, followed by the 

optimisation of the pre-processing framework of the dMRI to be able to use 

ACT (152) and combine the connectome construction with along-tract 

statistics. The final framework was tested in different sub-cohorts derived 

from the EBC showing how different external factors, such as the usage of 

antenatal MgSO4 and nutrition, can affect the structural connectivity of the 

preterm brain. 

As has been discussed in the introduction, the neonatal structural 

connectivity framework still has several limitations compared with the adult 

frameworks.  

I aimed to optimize the different steps involved in connectome construction 

by using tools specially designed/tested for neonates: to optimize the 

parcellation, an atlas especially developed from this cohort was created, 

allowing us to create a good parcellation of the T1w structural images 

collected in the cohort. For tractography creation, I proposed using up-

sampled data to match the voxel size of the diffusion MRI data with the voxel 

size of the structural data to avoid losing resolution in the 

parcellation/segmentation of the data. Another important benefit derived from 
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up-sampling of the data is that with structural and diffusion data sharing the 

same resolution it is possible to correct for the EPI distortions inherent to 

phase encoding artefacts in the EPI sequence. By performing an EPI 

distortion correction with the accurate tissue segmentation created with 

SEGMA (299) and the ACT framework with GMWMI seeding (152, 154) 

which allowed us to create more biologically accurate tractography data, can 

be applied. 

Finally, two steps for optimizing the tractography data were applied, namely 

LiFE (288) in the second chapter and SIFT (289) in the third. Every method 

has its own drawbacks and benefits over the other, but here, the goal of both 

is the same, specifically to minimize the biases associated with tractography 

generation. These problems include the fact that longer WM tracts present a 

greater volume from which to seed and in regions of complex architecture 

most streamline algorithms simply follow the most collinear fibre orientation 

introducing an imbalance in streamline densities (289). They achieve this 

goal by using different approaches. For example, LiFE uses the tractography 

data as an input to predict the original diffusion MRI data by modelling each 

tract using the “ball and stick” model and assigning its final weight to each 

tract in the reconstruction of the image. By doing this, the tracts with weight 0 

can be removed from the tractography data. On the other hand, SIFT uses 

the tractography data as an input and tries to predict the FOD in each voxel 

by assigning the corresponding cross-sectional area of WM to each 

streamline. By multiplying this area with the streamline length through a 
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particular voxel, the volume occupied by the WM reconstructed by that 

individual streamline in that voxel is defined (289). 

Both methods have been recently used in the literature and show 

improvements for the tractography reconstruction (288, 289, 310, 311, 340, 

361, 363, 364). However, only SIFT has been used before in addition to ACT 

(340, 361), and to our knowledge, it has been used in neonates only by 

Batalle et al. (131).  

This work presents an optimised and robust framework for analysing the 

structural connectome of the neonatal brain using methods specially 

designed for neonates and state of the art techniques. The framework has 

been designed and tested in the first wave of the TEBC. The results show an 

improvement of the tractography reconstruction data compared with 

commonly used methods, and this is reflected in the accuracy of the 

connectome construction and the derived connectivity measures. 

The effect of different external factors on the preterm brain was tested. First 

and as a proof of concept to probe the accuracy of the framework, I tested 

the effect of antenatal MgSO4 in a previously explored cohort reported by 

Anblagan et al.(29). I found similar results, namely an increase  in FA and 

reduction in MD in the splenium of the corpus callosum (note that this is 

sometimes known as WM integrity, but this term is not the most appropriate 

except in cases of clinically-diagnosed conditions (134)). After the framework 

was designed and tested, it was applied to test the effect of the impact of 

breastmilk feeding on the preterm brain. An increment of FA was found, after 

correcting for some known factors that affect WM integrity, such as BPD and 
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chorioamnionitis. The results suggest that this improvement is dose 

dependent and is also localized in certain areas of the brain. The differences 

were found using NBS (172), but there were no differences in any of the 

explored global network topological measures, namely global and local 

efficiency, normalised characteristic path length, normalized clustering 

coefficient and small-worldness. TBSS (123, 127) and a volumetric analysis 

of the cohort were also performed. With TBSS the results were similar, an 

increase in the FA, which was also dose dependent, with higher exposure 

correlating with increased white matter connectivity. There were no 

differences in the volumes. These findings are consistent with previous 

results reported in the literature (365, 366). 

 

 

 

6.2. Limitations 

The data of the first wave of the TEBC was acquired between February 2013 

and August 2015 using a single-shell protocol with a b-value of 750 s/mm2 

and a prioritization of T1w over the T2w scans. All the parameters were 

accurately selected at the time of data acquisition in order to start the project 

based on logic and precedents and were consistently kept throughout the 

whole project.  

In the future these acquisition protocols could benefit from recent advances 

such as optimised multi-shell acquisitions with high b-values (367), reverse 

phase encoding acquisitions to improve the EPI distortion correction (368-
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372), or basing the structural acquisitions on the T2w data to perform 

advance segmentations or surface based analysis methods (207, 373). 

On the diffusion side, a high b-value would increase the angular resolution 

that it is possible to achieve with the FOD. Typically, with the data we 

acquired, researchers use a tensor based reconstruction with a deterministic 

tractography algorithm. However, even with this b-value, the tractography 

reconstruction can be improved using cSD with a probabilistic algorithm. This 

has been specially tested in paediatric and neonatal populations (213). With 

the reverse phase encoding acquisition, it will be possible to correct for EPI 

susceptibility distortions in a more accurate way (374). To have both 

structural and diffusion MRI data perfectly aligned and corrected for EPI 

distortion is one of the requirements for applying the ACT framework (152). 

With a single-shell acquisition we are limited to the tensor derived metrics 

(FA, MD, etc.). These metrics have been used in the past to describe the 

integrity and complexity of the brain, and as a biomarker of brain 

development (375). However, it is also true that they have limitations in 

describing regions with complex WM microstructure. Due to this, new 

imaging maps (like NODDI (139)) should be used in addition to the previously 

existing maps, but the majority of those new maps require multi-shell 

acquisitions (139). 

The choice of one of the methods for filtering the tractography data used also 

affects the final result. For example, LiFE models the WM using two 

compartments, the free water movement and the restricted diffusion. While 

this model is good for modelling the WM, when used in combination with 
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ACT, some of the tracts have segments inside both the GM and dGM 

regions. This results in the model not being accurate enough in these 

regions. Another potential limitation is that it is computationally expensive. 

For this reason I decided to track only 100,000 tracts in each brain (recently, 

a framework to encode structural brain connectomes and dMRI data using 

multidimensional arrays has been proposed and released, it reduces the 

memory requirements needed by a factor of 40 and is able to process much 

larger connectomes (376)); after the application of LiFE these tracts are 

reduced by  45-55%. The final number of streamlines is quite low to reliably 

ensure the reproducibility of the connectome. With SIFT, it is possible to 

process larger connectomes in a reasonable time. However, the main 

limitations of this method are that you need to manually choose the final 

number of tracts or a desired value for the convergence criteria (a new 

version of the algorithm is available, where instead of filtering the 

tractography, a weight is assigned to each tract (313)). Furthermore, the 

algorithm works by modelling the FOD from the tractography data, and if the 

FOD does not model the free water movement, the algorithm does not model 

it. Multi-shell acquisitions allow the CSF (free) to be modelled in the FOD, 

which will result in more accurate AFD measures and more precise fibre 

orientation estimates at the tissue interfaces, resulting in more accurate and 

precise fibre tracking in large parts of the brain (377). 
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6.3. Future work and direction 

 

With the acquisition of the new datasets for the second wave of the TEBC, 

the proposed framework will evolve with the acquisition protocol and the new 

software developments. Recently, new tools have been developed for 

improving the preprocessing of the diffusion imaging data (323) that can be 

added to the framework. The new dataset comes with multi-shell data with 

reverse phase encoding acquisition and with T1w and T2w images acquired 

consistently for all subjects. This will allow us to improve the accuracy and 

speed of the processing. With reverse phase encoding it will be possible to 

apply field map based methods to correct for the EPI geometric distortion 

using topup/eddy (337, 368, 370). This will have two main benefits; first of all, 

an increase in the accuracy of the correction and registration of the structural 

imaging, as these methods have been shown to be more accurate than 

registration based methods (374). After this, to align the structural data with 

the diffusion data, a simple rigid registration step will be needed, thereby 

avoiding the non-linear registration step; the second inherent benefit will be 

an increase in the speed of the complete framework because up-sampling of 

the diffusion images won’t be needed. This means less voxels would be 

involved in each proceeding step. 

Multi-shell diffusion data has a lot of potential utilities and benefits over single 

shell acquisitions. In the tractography analysis, it will be possible to model 

different tissue responses (GM,WM and CSF) to obtain a FOD much more 

accurately (377). It will also allow the possibility to calculate more complex 
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diffusion maps (e.g. NODDI (139)) that better represents the complex WM 

microstructure in addition to the standard water diffusion tensor maps (FA, 

MD, etc.). 

The consistent acquisition of T2w images is also very beneficial for 

parcellation/segmentation purposes (207), as it has been shown in the 

literature that structural analyses based on T2w images are more accurate 

that those based on T1w images (299). 

The phenotypic data of the TEBC are very rich – socieconomics, genomics, 

eye-tracking, psychology – and when combined with imaging information in 

future analyses, will support mechanistic studies designed to discover causal 

tracts with regard to risk and resilience in brain growth, and early life 

biomarker development. These are essential steps in the research pathway 

of developing and evaluating new therapeutic strategies. 

Another important issue for the development of this field is the creation of two 

large projects aimed at helping us to better understand the developing 

connectome: the developing human connectome project (dHCP) 

(http://www.developingconnectome.org/) and the baby connectome project 

(BCP) (http://www.babyconnectomeproject.org/) (378). Those two projects 

aim to better understand how a healthy human brain develops and works. 

Researchers will characterize human brain connectivity and map patterns of 

structural and functional connectivity to important behavioural skills from 

infancy to early childhood. Additional biological (e.g., genetic markers) and 

environmental measures (e.g., family demographics) will be collected and 

examined to provide a more comprehensive picture of the factors that affect 

http://www.developingconnectome.org/
https://fnih.org/what-we-do/current-research-programs/baby-connectome
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brain development. This knowledge will be tremendously useful in 

understanding brain function and how early interventions may shape our 

brain throughout our lifespan. 

At some point it will be possible for researchers to combine these data (which 

will be available to all the research community) with their own datasets (for 

example the TEBC) and establish different collaborations with groups around 

the world to further the understanding of brain development in childhood and 

beyond.  
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Appendix 1 
 

The following table explains the parameters used in the calculation of the 

structural connectivity of the chapters four and five. 

Table A1: Detailed parameters of the steps involved in connectome creation 

Step Chapter 4 Chapter 5 

Denoising of the 

dMRI 

dwidenoise (mrtrix RC1) 

default parameters 

dwidenoise (mrtrix RC2) 

default parameters 

Upsampling of the 

dMRI 

mrresize (mrtrix RC1) -

vox 1,1,1 

mrresize (mrtrix rc2) -

scale 2 

Eddy current 

correction 
eddy_correct (FSL) default parameters 

Skull stripping 

Propagated from the T1w 

to the fisrst B0 (Niftyreg) 

using affine and nonrigid 

registration (default 

parameters) 

bet2 (FSL) -f 0.3 on the 

main B0 + manual 

editting 

Bias field correction 

of the dMRI 

dwibiascorrect (mrtrix 

RC1) default parameters 

dwibiascorrect (mrtrix 

RC2) default parameters 

Bias field correction 

T1w 
N4BiasFieldCorrection (ANTs) default parameters 

Skull stripping T1w ALFA default parameters* 

EPI distortion T1w to first B0 rigid registration (Niftyreg) default 
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correction parameters; Non-rigid registration restricted to the 

phase encoded direction of the B0 to the co-

registered T1w (ANTs) SyN registration, -g 1x0x0 

and mutual information 

Tissue 

segmentation of the 

aligned T1w 

antsRegistration (ANTs) with the recommended 

parameters for large deformation** + 

Segma default parameters* 

Parcellation of the 

aligned T1w 

antsRegistration (ANTs) with the recommended 

parameters for large deformation** 

Response function 

calculation 

dwi2response (mrtrix 

RC1) tournier algorithm 

with default parameters 

dwi2response (mrtrix 

RC2) tournier algorithm 

with default parameters 

FOD calculation 

dwi2fod (mrtrix RC1) csd 

algorithm with default 

parameters 

dwi2fod (mrtrix RC2) csd 

algorithm with default 

parameters 

Tractography 

tckgen (mrtrix RC1) 

iFOD2 algorithm, -cutoff 

0.15, -number 100000 

and ACT default 

parameters for up-

sampled data 

tckgen (mrtrix RC2) 

iFOD2 algorithm, -

number 10000000 and 

ACT default parameters 

for up-sampled data 

Filtering tractogram 

LiFE default parameters 

on a mask created from 

the WM tracts using 

tcksift (mrtrix RC2) with 

act image, -term_number 

2000000 and -
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tckmap -contrast tdi and 

threshold to a value of 1 

fd_scale_gm 

Tensor maps 

creation 
dtifit (FSL) with -w 

Connectome 

creation 

tck2connectome (mrtrix 

RC1) with -

assignment_end_voxels 

and -zero_diagonal on 

the streamline weighted 

connectome 

tck2connectome (mrtrix 

RC2) with -

assignment_end_voxels 

and -zero_diagonal on 

the streamline weighted 

connectome 

the FA weighted, created 

using tcksample -stat_tck 

mean and the options -

scale_file, -

assignment_end_voxels, 

-zero_diagonal and -

stat_edge mean in 

tck2connectome 

*For this algorithm there are not default parameters, only guidelines about his 

performance with different datasets, including our dataset. For the 

recommended values, please see the original publications 

**The parameters for large deformation are extracted from the ANTs manual 

(http://stnava.github.io/ANTs/) 
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