543 research outputs found

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    Optimization of sample preparation for MRI of formaldehyde-fixed brains

    Get PDF
    International audienceMagnetic resonance imaging of post-mortem brains allows long acquisition times up to several days and can be used to obtain high-resolution images at high field (7 T) which can be readily correlated with histological examination of the tissue. However, death and formaldehyde fixation are known to modify severely the relaxivity and diffusion properties of brain tissue. In particular, formaldehyde is known to shorten T2, which drastically reduces SNR.In order to counteract this effect and recover better SNR, free fixative can be washed out by soaking the sample in isotonic saline solution. This has been demonstrated in small biopsy-sized tissue samples, but little data is available concerning whole brain specimens.This study was designed to describe the kinetics of the change of relaxivity and diffusion properties of whole brain specimen at 7 T, during fixation, and during soaking in saline solution, in order to determine optimal soaking times.In the ewe brain, the fixation was found to stabilize after approximately 8 weeks, and the optimal duration of saline soaking is found to be around 3 weeks. These durations can be expected to be longer for larger specimen, such as human brains, which require longer penetration times

    Acquisition, visualisation et reconstruction 3D de données anatomiques issues de dissection (application aux fibres blanches cérébrales)

    Get PDF
    Dans cette thĂšse, nous prĂ©sentons un systĂšme complet permettant de sauvegarder un processus destructif tel qu'une dissection anatomique. Nous proposons une mĂ©thode depuis l'acquisition 3D des donnĂ©es jusqu'Ă  la visualisation interactive et immersive, dans le but de crĂ©er une vĂ©ritĂ© terrain. L'acquisition 3D regroupe l'acquisition de la gĂ©omĂ©trie par scanner laser (maillage) ainsi que de l'information de couleur par le biais d'un appareil photo haute rĂ©solution (texture). Ce processus d'acquisition et rĂ©pĂ©tĂ© au cours de la dissection du spĂ©cimen. Les diffĂ©rentes acquisitions du spĂ©cimen sont reprĂ©sentĂ©es par des surfaces 3D texturĂ©es. Elles sont ensuite recalĂ©es entre elles. Un expert anatomiste peut alors explorer ces diffĂ©rentes Ă©tapes de dissections modĂ©lisĂ©es dans une visualisation immersive en utilisant du matĂ©riel d'interaction (bras haptique). Un outil d'Ă©tiquetage permet une segmentation manuelle prĂ©cise de rĂ©gions d'intĂ©rĂȘt visibles sur chacune des surfaces 3D. Un objet tridimensionnel peut ensuite ĂȘtre reconstruit et proposĂ© Ă  l'utilisateur sur la base des zones d'intĂ©rĂȘt Ă©tiquetĂ©es. Le but Ă©tant de crĂ©er des vĂ©ritĂ© terrains afin de confronter des rĂ©sultats issus de modalitĂ©s d'acquisition volumiques (IRM). Nous montrons l'application de la mĂ©thode Ă  la reconstruction de faisceaux de fibres blanches humaine dans le but de valider des rĂ©sultats de tractographie.In this thesis, we present a system to keep track of a destructive process such as a medical specimen dissection, from data acquisition to interactive and immersive visualization, in order to build ground truth models. Acquisition is a two-step process, first involving a 3D laser scanner to get a 3D surface, and then a high resolution camera for capturing the texture. This acquisition process is repeated at each step of the dissection, depending on the expected accuracy and the specific objects to be studied. Thanks to fiducial markers, surfaces are registered on each others. Experts can then explore data using interaction hardware in an immersive 3D visualization. An interactive labeling tool is provided to the anatomist, in order to identify regions of interest on each acquired surface. 3D objects can then be reconstructed according to the selected surfaces. We aim to produce ground truths which for instance can be used to validate data acquired with MRI. The system is applied to the specific case of white fibers reconstruction in the human brain.TOURS-Bibl.Ă©lectronique (372610011) / SudocSudocFranceF

    Spondylodiscitis and an aortic aneurysm due to Campylobacter coli

    Get PDF
    Campylobacter coli is a rare cause of bacteremia. We report here the first case of C.coli spondylodiscitis complicated by an aortic aneurysm. Outcome was favourable with surgery and antibiotic therapy

    Functional morphological imaging of autism spectrum disorders: Current position and theories proposed

    Get PDF
    AbstractAutism is a pervasive disorder of childhood development. Polymorphous clinical profiles combining various degrees of communication and social interaction with restricted and stereotyped behaviour are grouped under the heading of ‘autism spectrum disorders’ (ASD). Many teams are trying to pick out the underlying cerebral abnormalities in order to understand the neuronal networks involved in relationships with others. Here we review the morphological, spectroscopic and functional abnormalities in the amygdala-hippocampal circuit, the caudate nuclei, the cerebellum, and the frontotemporal regions, which have been described in subjects with ASD. White matter abnormalities have also been described in diffusion tensor imaging, leading to suspected damage to the subjacent neural networks, such as mirror neurones or the social brain

    Interactive computation and visualization of structural connectomes in real-time

    Get PDF
    Structural networks contain high dimensional data that raise huge computational and visualization problems, especially when attempting to characterise them using graph theory. As a result, it can be non-intuitive to grasp the contribution of each edge within a graph, both at a local and global scale. Here, we introduce a new platform that enables tractography-based networks to be explored in a highly interactive real-time fashion. The framework allows one to interactively tune graph-related parameters on the fly, as opposed to conventional visualization softwares that rely on pre-computed connectivity matrices. From a neurosurgical perspective, the method also provides enhanced understanding regarding the potential removal of a specific node or transection of an edge from the network, allowing surgeons and clinicians to discern the value of each node

    Assessing the performance of atlas-based prefrontal brain parcellation in an aging cohort

    Get PDF
    OBJECTIVE: It is unclear whether atlas-based parcellation is suitable in ageing cohorts because age-related brain changes confound the performance of automatic methods. We assessed atlas-based parcellation of the prefrontal lobe in an ageing population using visual assessment, volumetric and spatial concordance. METHODS: We used atlas-based approach to parcellate brain MR images of 90 non-demented healthy adults, aged 72.7±0.7yrs and assed performance. RESULTS: Volumetric assessment showed that both single- and multi-atlas-based methods performed acceptably (Intraclass correlation coefficient, ICC:0.74 to 0.76). Spatial overlap measurements showed that multi- (Dice Coefficient, DC:0.84) offered an improvement over the single- (DC:0.75 to 0.78) atlas approach. Visual assessment also showed that multi-atlas outperformed single-atlas, and identified an additional post-processing step of CSF removal, enhancing concordance (ICC:0.86, DC:0.89). CONCLUSIONS: Atlas-based parcellation performed reasonably well in the ageing population. Rigorous performance assessement aided method refinement, and emphasises the importance of age-matching and post-processing. Further work is required in more varied subjects

    Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides

    Get PDF
    The role of heterotrophic biofilm of water–sediment interface in detoxification processes was tested in abiotic and biotic conditions under laboratory conditions. Three toxicants, a herbicide (Diuron), a fungicide (Dimethomorph) and an insecticide (Chlorpyrifos-ethyl) have been tested in water percolating into columns reproducing hyporheic sediment. The detoxification processes were tested by comparing the water quality after 18 days of percolation with and without heterotrophic biofilm. Tested concentrations were 30 mg.Lx1 of Diuron diluted in 0.1% dimethyl sulfoxide (DMSO), 2 mg.Lx1 of Dimethomorph and 0.1 mg.Lx1 of Chlorpyrifos-ethyl. To characterise the detoxification efficiency of the system, we performed genotoxicity bioassays in amphibian larvae and rotifers and measured the respiration and denitrification of sediments. Although the presence of biofilm increased the production of N-(3,4 dichlorophenyl)-N-(methyl)-urea, a metabolite of diuron, the toxicity did not decrease irrespective of the bioassay. In the presence of biofilm, Dimethomorph concentrations decreased compared with abiotic conditions, from 2 mg.Lx1 to 0.4 mg.Lx1 after 18 days of percolation. For both Dimethomorph and Chlorpyrifos-ethyl additions, assessment of detoxification level by the biofilm depended on the test used: detoxification effect was found with amphibian larvae bioassay and no detoxification was observed with the rotifer test. Heterotrophic biofilm exerts a major influence in the biochemical transformation of contaminants such as pesticides, suggesting that the interface between running water and sediment plays a role in self-purification of stream reaches

    Brain structure across the lifespan : the influence of stress and mood

    Get PDF
    Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood, and their interplay in the brain gray and white matter (WM) structure. We showed the critical impact of age in the WM volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.We are thankful to all study participants. This work was funded by the European Commission (FP7): "SwitchBox" (Contract HEALTH-F2-2010-259772) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Jose M. Soares, Paulo Marques, and Nadine C. Santos are supported by fellowships of the project "SwitchBox"; Ricardo Magalhaes is supported by a fellowship from the project FCTANR/NEU-OSD/0258/2012 funded by FCT/MEC (www.fct.pt) and by ON.2 - ONOVONORTE - North - Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/2013, through FEDER
    • 

    corecore