182 research outputs found

    Photo-consistent surface reconstruction from noisy point clouds

    Get PDF
    International audienceExisting algorithms for surface reconstruction from point sets are defeated by moderate amounts of noise and outliers, which makes them unapplicable to point clouds originating from multi-view image data. In this paper, we present a novel method which incorporates the input images in the surface reconstruction process for a better accuracy and robustness. Our approach is based on the medial axis transform of the scene, which our algorithm estimates through a global photo-consistency optimization by simulated annealing. A faithful polyhedral representation of the scene is then obtained by inversion of the medial axis transform

    Multi-Head Graph Convolutional Network for Structural Connectome Classification

    Full text link
    We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, capturing representations from the input data thoroughly. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model

    A Hough transform global approach to diffusion MRI tractography

    Get PDF
    International audienceTractography in Diffusion-Weighted MRI provides a unique quantitative measurement of the brain's anatomical connectivity using information not available from other imaging techniques. Many tractography algorithms are based on local fiber orientation estimates, such as streamline methods, and are vulnerable to noise and partial volume effects; fiber crossing and kissing are also difficult to distinguish. This led to the development of probabilistic techniques [1] and global approaches relying on front propagation [2, 3] or simulation of the diffusion process [4]. In this work, we present a global approach based on the voting process provided by the Hough transform [5]. Our proposed tractography algorithm essentially tests all possible 3D curves in the volume, assigning a score to each of them, then selecting the curves with the highest scores, and returning them as the potential anatomical connections. We present experimental results on both artificial and real diffusion tensor images (DTI) and high-angular resolution diffusion images (HARDI)

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    On Line Reconstruction and Motion Detection in HARDI

    Get PDF
    International audienceWith acquisition protocols such as high angular resolution diffusion imaging, head motion can become an issue. Although the misalignment between diffusion-weighted images (DWIs) can be corrected in a post-processing step, this might increase partial volume effects, because of the relatively low spatial resolution of DWIs and interpolation in the registration procedure. If able to detect motion online, the scanner technician could be issued a warning and make a decision accordingly. Orientation distribution functions (ODF) can be reconstructed online using a Kalman filter (KF). We present three contributions related to the problem of online ODF reconstruction and motion detection in HARDI. First, we develop a proper error propagation accounting for the non-linear transform on the diffusion signal. Next, we develop two motion detection algorithms, based on the monitoring of residuals, and compare them using synthetic data

    Mid-space-independent deformable image registration

    Get PDF
    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images

    Incompressible image registration using divergence-conforming B-splines

    Get PDF
    Anatomically plausible image registration often requires volumetric preservation. Previous approaches to incompressible image registration have exploited relaxed constraints, ad hoc optimisation methods or practically intractable computational schemes. Divergence-free velocity fields have been used to achieve incompressibility in the continuous domain, although, after discretisation, no guarantees have been provided. In this paper, we introduce stationary velocity fields (SVFs) parameterised by divergence-conforming B-splines in the context of image registration. We demonstrate that sparse linear constraints on the parameters of such divergence-conforming B-Splines SVFs lead to being exactly divergence-free at any point of the continuous spatial domain. In contrast to previous approaches, our framework can easily take advantage of modern solvers for constrained optimisation, symmetric registration approaches, arbitrary image similarity and additional regularisation terms. We study the numerical incompressibility error for the transformation in the case of an Euler integration, which gives theoretical insights on the improved accuracy error over previous methods. We evaluate the proposed framework using synthetically deformed multimodal brain images, and the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate that our method compares favourably with state-of-the-art methods whilst achieving volume preservation.Comment: Accepted at MICCAI 201

    Quantification of volumetric morphometry and optical property in the cortex of human cerebellum at micrometer resolution

    Get PDF
    The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases

    Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE

    Get PDF
    Purpose: To examine the effects of the reconstruction algorithm of magnitude images from multi-channel diffusion MRI on fibre orientation estimation. Theory and Methods: It is well established that the method used to combine signals from different coil elements in multi-channel MRI can have an impact on the properties of the reconstructed magnitude image. Utilising a root-sum-of-squares (RSoS) approach results in a magnitude signal that follows an effective non-central-distribution. As a result, the noise floor, the minimum measurable in the absence of any true signal, is elevated. This is particularly relevant for diffusion-weighted MRI, where the signal attenuation is of interest. Results: In this study, we illustrate problems that such image reconstruction characteristics may cause in the estimation of fibre orientations, both for model-based and model-free approaches, when modern 32-channel coils are employed. We further propose an alternative image reconstruction method that is based on sensitivity encoding (SENSE) and preserves the Rician nature of the single-channel, magnitude MR signal. We show that for the same k-space data, RSoS can cause excessive overfitting and reduced precision in orientation estimation compared to the SENSE-based approach. Conclusion: These results highlight the importance of choosing the appropriate image reconstruction method for tractography studies that use multi-channel receiver coils for diffusion MRI acquisition

    Online orientation distribution function reconstruction in constant solid angle and its application to motion detection in HARDI

    Get PDF
    International audienceThe diffusion orientation distribution function (ODF) can be reconstructed from q-ball imaging (QBI) to map the complex intravoxel structure of water diffusion. As acquisition time is particularly large for high angular resolution diffusion imaging (HARDI), fast estimation algorithms have recently been proposed, as an on-line feedback on the reconstruction accuracy. Thus the acquisition could be stopped or continued on demand. We adapt these real-time algorithms to the mathematically correct definition of ODF in constant solid angle (CSA), and develop a motion detection algorithm upon this reconstruction. Results of improved fiber crossing detection by CSA ODF are shown, and motion detection was implemented and tested in vivo
    • …
    corecore