7 research outputs found

    Cartilage repair: A review of Stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques

    No full text
    Articular cartilage damage in the young adult knee, if left untreated, it may proceed to degenerative osteoarthritis and is a serious cause of disability and loss of function. Surgical cartilage repair of an osteochondral defect can give the patient significant relief from symptoms and preserve the functional life of the joint. Several techniques including bone marrow stimulation, cartilage tissue based therapy, cartilage cell seeded therapies and osteotomies have been described in the literature with varying results. Established techniques rely mainly on the formation of fibro-cartilage, which has been shown to degenerate over time due to shear forces. The implantation of autologous cultured chondrocytes into an osteochondral defect, may replace damaged cartilage with hyaline or hyaline-like cartilage. This clinical review assesses current surgical techniques and makes recommendations on the most appropriate method of cartilage repair when managing symptomatic osteochondral defects of the knee. We also discuss the experience with the technique of autologous chondrocyte implantation at our institution over the past 11 years

    Humanized Mouse Models for the Preclinical Assessment of Cancer Immunotherapy

    No full text

    Determination of the top-quark pole mass and strong coupling constant from the ttbar production cross section in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, mtpole, or the strong coupling constant, alphaS. With the parton distribution function set NNPDF2.3, a pole mass of 176.7 +3.8 -3.4 GeV is obtained when constraining alphaS at the scale of the Z boson mass, mZ, to the current world average. Alternatively, by constraining mtpole to the latest average from direct mass measurements, a value of alphaS(mZ) = 0.1151 +0.0033 -0.0032 is extracted. This is the first determination of alphaS using events from top-quark production

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Alignment of the CMS tracker with LHC and cosmic ray data

    No full text
    The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multiprocessor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10 mu m
    corecore