27 research outputs found

    Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA)

    Get PDF
    The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression.publishedVersio

    The N-terminal acetyltransferase Naa10 is essential for zebrafish development

    Get PDF
    N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.publishedVersio

    Comparative analysis of IgM sub-variants in salmonid fish and identification of a residue in mu 3 which is essential for MAb4C10 reactivity

    Get PDF
    In rainbow trout (Onchorhynchus mykiss) it has been shown that high affinity IgM antibodies havea higher degree of disulfide polymerization and a longer half life time. In the present study, distinct IgMsub-variants related to ancestral tetraploidy in salmonidfish were analyzed to reveal possible charac-teristic differences between these. A monoclonal antibody (MAb4C10) which distinguishes between IgM-A and IgM-B in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) was further characterized. Itwas shown that substitution of a proline located in the loop between the B and C beta strands of the thirdconstant domain (m3) of salmonmA eliminated MAb4C10 reactivity. Accordingly, the reverse substitutionin salmonmB restored MAb4C10 reactivity. Molecular cloning ofmcDNA from arctic char (Salvelinusalpinus) revealed two sub-variants (mA-1 andmA-2), i.e. a similar situation as in Atlantic salmon andbrown trout. However, arctic char IgM eluted in one peak by anion exchange chromatography, in contrastto salmon and brown trout IgM that are eluted in two peaks. The only characteristic residue of salmonand brown troutmB is an additional cysteine in the C-terminal part ofm4. Most likely, this cysteine isinvolved in inter-chain disulfide bonding and influences the elution profiles of IgM-A and IgM-B on anionexchange chromatography. Neither of themsub-variants in arctic char have the additional cysteine, andchar IgM, as well as salmon and brown trout IgM-A, showed a lower degree of inter-chain disulfidebonding than IgM-B when subjected to denaturation and gel electrophoresis under non-reducingconditions. Hybrids of char/salmon expressedmA-1,mA-2,mA andmB, indicating that there are twoparalogous Ig heavy chain gene complexes in the haploid genome of char, like in Atlantic salmon. Acomparison of salmonidmsequences is presented, including representatives ofSalmoninae(trout, salmonand char),Thymallinae(grayling) andCoregoninae(whitefish)submittedVersio

    The Inflammatory Cytokine IL-3 Hampers Cardioprotection Mediated by Endothelial Cell-Derived Extracellular Vesicles Possibly via Their Protein Cargo

    Get PDF
    The biological relevance of extracellular vesicles (EV) released in an ischemia/reperfusion setting is still unclear. We hypothesized that the inflammatory microenvironment prevents cardioprotection mediated by endothelial cell (EC)-derived extracellular vesicles. The effects of naïve EC-derived EV (eEV) or eEV released in response to interleukin-3 (IL-3) (eEV-IL-3) were evaluated in cardiomyoblasts (H9c2) and rat hearts. In transwell assay, eEV protected the H9c2 exposed to hypoxia/reoxygenation (H/R) more efficiently than eEV-IL-3. Conversely, only eEV directly protected H9c2 cells to H/R-induced damage. Consistent with this latter observation, eEV, but not eEV-IL-3, exerted beneficial effects in the whole heart. Protein profiles of eEV and eEV-IL-3, established using label-free mass spectrometry, demonstrated that IL-3 drives changes in eEV-IL-3 protein cargo. Gene ontology analysis revealed that both eEV and eEV-IL-3 were equipped with full cardioprotective machinery, including the Nitric Oxide Signaling in the Cardiovascular System. eEV-IL-3 were also enriched in the endothelial-nitric oxide-synthase (eNOS)-antagonist caveolin-1 and proteins related to the inflammatory response. In vitro and ex vivo experiments demonstrated that a functional Mitogen-Activated Protein Kinase Kinase (MEK1/2)/eNOS/guanylyl-cyclase (GC) pathway is required for eEV-mediated cardioprotection. Consistently, eEV were found enriched in MEK1/2 and able to induce the expression of B-cell-lymphoma-2 (Bcl-2) and the phosphorylation of eNOS in vitro. We conclude that an inflammatory microenvironment containing IL-3 changes the eEV cargo and impairs eEV cardioprotective action

    Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Comprehensive Analysis of Exported Proteins from Mycobacterium tuberculosis H37Rv

    Get PDF
    Proteins secreted by Mycobacterium tuberculosis play an essential role in the pathogenesis of tuberculosis. The culture filtrates of M. tuberculosis H37Rv made by Sadamu Nagai (Japan), are considerably enriched for secreted proteins compared to other culture filtrates. Complementary approaches were used to identify the secreted proteins in these culture filtrates: (i) 2-DE combined with MALDI-TOF MS and (ii) LC coupled MS/MS. Peptides derived from a total of 257 proteins were identified of which 144 were identified by more than one peptide. Several members of the immunologically important early secretory antigenic target-6 (ESAT-6) family of proteins were found to be major components. The majority of the identified proteins, 159 (62%), were predicted to be exported through the general secretory pathway. We experimentally verified that the signal peptides, which mediate translocation through the cell membrane, had been removed in 41 of the identified proteins, and in 35 of those, there was an AXA motif N-terminally to the cleavage site, showing that this motif is important for the recognition and cleavage of signal peptides in mycobacteria. A large fraction of the secreted proteins were unknown, suggesting that we have mapped an unexplored part of the exported proteome of M. tuberculosis

    Nodularin Exposure Induces SOD1 Phosphorylation and Disrupts SOD1 Co-localization with Actin Filaments

    Get PDF
    Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS), which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1), without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized
    corecore