175 research outputs found

    A barnavirus sequence mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis.

    Get PDF
    Because so few viruses in the family Barnaviridae have been reported, we searched for more of them in public sequence databases. Here, we report the complete coding sequence of Colobanthus quitensis associated barnavirus 1, mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis. The 4.2-kb plus-strand sequence of this virus encompasses four main open reading frames (ORFs), as expected for barnaviruses, including ORFs for a protease-containing polyprotein, an RNA-dependent RNA polymerase whose translation appears to rely on - 1 ribosomal frameshifting, and a capsid protein that is likely to be translated from a subgenomic RNA. The possible derivation of this virus from a fungus associated with C. quitensis is discussed

    The ecological fallacy of the role of age in chronic disease and hospital demand

    Get PDF
    Objective: To examine the relationship between age and all-cause hospital utilization in the years preceding and following a diagnosis in hospital of heart failure, type 2 diabetes, or chronic obstructive pulmonary disease (COPD). Research Design: A cohort study of all patients in Western Australia who have had a principal diagnosis of heart failure, type 2 diabetes, or COPD, upon admission to hospital. All-cause hospital utilization 6 years preceding and 4 years following cardinal events, that is, a disease-specific diagnosis upon hospital admission, where such an event has not occurred in the previous 2 years, are examined in specific age groups. Results: Six years preceding a cardinal event, all-cause emergency department (ED) presentations are similar in all age groups, from under 55 to over 85 years of age, except in COPD where ED presentation rates are higher in younger groups. All-cause hospital inpatient days are transiently higher in the years preceding and following a cardinal event in older age groups, yet return to similar levels across all age cohorts after 4 years. ED presentations are significantly higher in the 4 years following cardinal events in younger compared with older groups. Conclusions: Longitudinal analysis of utilization around cardinal events overcomes the confounding effect of differences in chronic disease rates between age groups, avoiding a source of ecologic bias that erroneously attributes increasing utilization in individuals with chronic disease to age. Programs designed to reduce hospital demand in patients with chronic disease should possibly focus on younger, rather than older, individuals

    The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87

    Get PDF
    The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.Comment: 27 pages, 21 figures. To appear in The Astrophysical Journa

    Archaeological bone lipids as palaeodietary markers

    Get PDF
    Rationale Stable isotope analysis of archaeological and fossil bone samples can provide important insights into past environments, ecologies and diets. Previous studies have focused on stable carbon and nitrogen isotopes in bone collagen, or carbon isotopes in bone mineral (bioapatite). Carbon isotope analysis of lipids from archaeological bone has received much less attention, partly due to the lack of suitable methodologies allowing sufficient recovery of compounds for structural and isotopic characterisation. Here we show that lipids can be easily and reliably recovered from archaeological bone using a modified protocol, and that these provide complementary dietary information to other bone components. Methods Human and animal bones were obtained from a variety of archaeological contexts. Lipids were sequentially extracted using solvent extraction (dichloromethane/methanol), followed by acidified methanol extraction (methanol/H2SO4). The lipids were then analysed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Results Appreciable amounts of endogenous lipid were recovered from archaeological bone. Importantly, a comparison between compound-specific and bulk collagen isotopic data shows that archaeological bone lipids reflect dietary input and can be used to distinguish between marine and terrestrial consumers, as well as between C3 and C4 plant consumers. Furthermore, the presence of essential fatty acids directly incorporated from diet to bone may provide additional palaeodietary information. Conclusions Our findings suggest that archaeological bone lipids are a hitherto untapped resource of dietary information that offer additional insights to those gained from other isotopic analyses of bone

    Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development

    Get PDF
    Climate change and coastal urbanization are driving the replacement of natural habitats with artificial structures and reclaimed land globally. These novel habitats are often poor surrogates for natural habitats. The application of integrated greening of grey infrastructure (IGGI) to artificial shorelines demonstrates how multifunctional structures can provide biodiversity benefits whilst simultaneously serving their primary engineering function. IGGI is being embraced globally, despite many knowledge gaps and limitations. It is a management tool to compensate anthropogenic impacts as part of the Mitigation Hierarchy. There is considerable scope for misuse and ‘greenwashing’ however, by making new developments appear more acceptable, thus facilitating the regulatory process. We encourage researchers to exercise caution when reporting on small-scale experimental trials. We advocate that greater attention is paid to when experiments ‘fail’ or yield unintended outcomes. We advise revisiting, repeating and expanding on experiments to test responses over broader spatio-temporal scales to improve the evidence base. Synthesis and applications. Where societal and economic demand makes development inevitable, particular attention should be paid to avoiding, minimizing and rehabilitating environmental impacts. Integrated greening of grey infrastructure (IGGI) should be implemented as partial compensation for environmental damage. Mutual benefits for both humans and nature can be achieved when IGGI is implemented retrospectively in previously developed or degraded environments. We caution, however, that any promise of net biodiversity gain from new developments should be scrutinized and any local ecological benefits set in the context of the wider environmental impacts. A ‘greened’ development will always impinge on natural systems, a reality that is much less recognized in the sea than on land.</p

    Effects of ocean sprawl on ecological connectivity: impacts and solutions

    Get PDF
    The growing number of artificial structures in estuarine, coastal and marine environments is causing “ocean sprawl”. Artificial structures do not only modify marine and coastal ecosystems at the sites of their placement, but may also produce larger-scale impacts through their alteration of ecological connectivity - the movement of organisms, materials and energy between habitat units within seascapes. Despite the growing awareness of the capacity of ocean sprawl to influence ecological connectivity, we lack a comprehensive understanding of how artificial structures modify ecological connectivity in near- and off-shore environments, and when and where their effects on connectivity are greatest. We review the mechanisms by which ocean sprawl may modify ecological connectivity, including trophic connectivity associated with the flow of nutrients and resources. We also review demonstrated, inferred and likely ecological impacts of such changes to connectivity, at scales from genes to ecosystems, and potential strategies of management for mitigating these effects. Ocean sprawl may alter connectivity by: (1) creating barriers to the movement of some organisms and resources - by adding physical barriers or by modifying and fragmenting habitats; (2) introducing new structural material that acts as a conduit for the movement of other organisms or resources across the landscape; and (3) altering trophic connectivity. Changes to connectivity may, in turn, influence the genetic structure and size of populations, the distribution of species, and community structure and ecological functioning. Two main approaches to the assessment of ecological connectivity have been taken: (1) measurement of structural connectivity - the configuration of the landscape and habitat patches and their dynamics; and (2) measurement of functional connectivity - the response of organisms or particles to the landscape. Our review reveals the paucity of studies directly addressing the effects of artificial structures on ecological connectivity in the marine environment, particularly at large spatial and temporal scales. With the ongoing development of estuarine and marine environments, there is a pressing need for additional studies that quantify the effects of ocean sprawl on ecological connectivity. Understanding the mechanisms by which structures modify connectivity is essential if marine spatial planning and eco-engineering are to be effectively utilised to minimise impacts

    Chapter 4 Design Options, Implementation Issues and Evaluating Success of Ecologically Engineered Shorelines

    Get PDF
    Human population growth and accelerating coastal development have been the drivers for unprecedented construction of artificial structures along shorelines globally. Construction has been recently amplified by societal responses to reduce flood and erosion risks from rising sea levels and more extreme storms resulting from climate change. Such structures, leading to highly modified shorelines, deliver societal benefits, but they also create significant socioeconomic and environmental challenges. The planning, design and deployment of these coastal structures should aim to provide multiple goals through the application of ecoengineering to shoreline development. Such developments should be designed and built with the overarching objective of reducing negative impacts on nature, using hard, soft and hybrid ecological engineering approaches. The design of ecologically sensitive shorelines should be context-dependent and combine engineering, environmental and socioeconomic considerations. The costs and benefits of ecoengineered shoreline design options should be considered across all three of these disciplinary domains when setting objectives, informing plans for their subsequent maintenance and management and ultimately monitoring and evaluating their success. To date, successful ecoengineered shoreline projects have engaged with multiple stakeholders (e.g. architects, engineers, ecologists, coastal/port managers and the general public) during their conception and construction, but few have evaluated engineering, ecological and socioeconomic outcomes in a comprehensive manner. Increasing global awareness of climate change impacts (increased frequency or magnitude of extreme weather events and sea level rise), coupled with future predictions for coastal development (due to population growth leading to urban development and renewal, land reclamation and establishment of renewable energy infrastructure in the sea) will increase the demand for adaptive techniques to protect coastlines. In this review, we present an overview of current ecoengineered shoreline design options, the drivers and constraints that influence implementation and factors to consider when evaluating the success of such ecologically engineered shorelines
    • 

    corecore