975 research outputs found
Search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ
A search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ is performed with a data sample, corresponding to an integrated luminosity of 1.0ââfb-1 of pp collisions at âs=7ââTeV, collected by the LHCb experiment. The observed number of Bs0âe±Όâ and B0âe±Όâ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0âe±Όâ)101ââTeV/c2 and MLQ(B0âe±Όâ)>126ââTeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP
The process e+e- -> W+W-gamma is analysed using the data collected with the
L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an
integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W-
candidates containing an isolated hard photon, the W+W-gamma cross section,
defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80
+/- 16 fb, consistent with the Standard Model expectation. Including the
process e+e- -> nu nu gamma gamma, limits are derived on anomalous
contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z
gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 <
a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2
Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings
Single W boson production in electron-positron collisions is studied with the
L3 detector at LEP. The data sample collected at a centre-of-mass energy of
\sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1.
Events with a single energetic lepton or two acoplanar hadronic jets are
selected. Within phase-space cuts, the total cross-section is measured to be
0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation.
Including our single W boson results obtained at lower \sqrt{s}, the WWgamma
gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma =
0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV
A search for the lightest neutral scalar and neutral pseudoscalar Higgs
bosons in the Minimal Supersymmetric Standard Model is performed using 176.4
pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of
189 GeV. No signal is observed, and the data are consistent with the expected
Standard Model background. Lower limits on the masses of the lightest neutral
scalar and pseudoscalar Higgs bosons are given as a function of tan(beta).
Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h
> 77.1 GeV and m_A > 77.1 GeV
Measurement of Bose-Einstein Correlations in e+e- -> W+W- at root(s)=189GeV
We investigate Bose-Einstein correlations (BEC) in W-pair production at
root(s)=189GeV using the L3 detector at LEP. We observe BEC between particles
from a single W decay in good agreement with those from a light-quark Z decay
sample. We investigate their possible existence between particles coming from
different W's. No evidence for such inter-W BEC is found
- âŠ