36 research outputs found

    Effects of Crystalline Disorder on Interfacial and Magnetic Properties of Sputtered Topological Insulator/Ferromagnet Heterostructures

    Full text link
    Thin films of Topological insulators (TIs) coupled with ferromagnets (FMs) are excellent candidates for energy-efficient spintronics devices. Here, the effect of crystalline structural disorder of TI on interfacial and magnetic properties of sputter-deposited TI/FM, Bi2Te3/Ni80Fe20, heterostructures is reported. Ni and a smaller amount of Fe from Py was found to diffuse across the interface and react with Bi2Te3. For highly crystalline c-axis oriented Bi2Te3 films, a giant enhancement in Gilbert damping is observed, accompanied by an effective out-of-plane magnetic anisotropy and enhanced damping-like spin-orbit torque (DL-SOT), possibly due to the topological surface states (TSS) of Bi2Te3. Furthermore, a spontaneous exchange bias is observed in hysteresis loop measurements at low temperatures. This is because of an antiferromagnetic topological interfacial layer formed by reaction of the diffused Ni with Bi2Te3 which couples with the FM, Ni80Fe20. For increasing disorder of Bi2Te3, a significant weakening of exchange interaction in the AFM interfacial layer is found. These experimental results Abstract length is one paragraph

    Spintronic Quantum Phase Transition in a Graphene/Pb0.24Sn0.76TeGraphene/Pb_{0.24}Sn_{0.76}Te Heterostructure with Giant Rashba Spin-Orbit Coupling

    Full text link
    Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a two-dimensional electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. We study the spintronic properties of this heterostructure with non-local spin valve devices. We observe spin-momentum locking at lower temperatures that transitions to regular spin channel transport only at ~40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin-momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition-like behavior in the Land\'e g-factor and spin relaxation time.Comment: 33 pages, 17 figures, supplemental information include

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore