Spintronic Quantum Phase Transition in a Graphene/Pb0.24Sn0.76TeGraphene/Pb_{0.24}Sn_{0.76}Te Heterostructure with Giant Rashba Spin-Orbit Coupling

Abstract

Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a two-dimensional electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. We study the spintronic properties of this heterostructure with non-local spin valve devices. We observe spin-momentum locking at lower temperatures that transitions to regular spin channel transport only at ~40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin-momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition-like behavior in the Land\'e g-factor and spin relaxation time.Comment: 33 pages, 17 figures, supplemental information include

    Similar works

    Full text

    thumbnail-image

    Available Versions