70 research outputs found

    Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour

    Get PDF
    Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments

    Greenhouse gas emissions from the energy crop oilseed rape (Brassica napus); the role of photosynthetically active radiation in diurnal N2O flux variation

    Get PDF
    Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel, hence carbon dioxide (CO2), methane (CH4) and particularly fertiliser-derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification (ammonium (NH4)) and denitrification (nitrate (NO3)), the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: i produce an accurate GHG budget of fertiliser application; ii characterise short to medium-term variation in GHG fluxes; iii establish the processes driving N2O emission. Three treatments were applied twice, one week apart: ammonium nitrate fertiliser (NH4NO3, 69 kg-1N ha-1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg-1N ha-1) and sodium nitrate (NaNO3, 34.6 kg-1N ha-1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During three weeks following the fertiliser application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m-2). Cumulative N2O emissions (ca. 120 g CO2-eq m-2) from NH4NO3 were significantly greater (p< 0.04) than from NaNO3 (ca. 80 g CO2-eq m-2), but did not differ from NH4Cl (ca. 100 g CO2-eq m-2), and reduced the carbon-sink of photosynthesis so that OSR was a net GHG source in the fertiliser treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process-based models of GHG emissions

    Raman spectroscopy: techniques and applications in the life sciences

    Get PDF
    Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration

    Unguarded tricuspid valvar orifice in the fetus

    No full text

    Isotopic composition of ground ice, ebullition gases and thermokarst lake water, North America

    No full text
    Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4
    • 

    corecore