81 research outputs found

    SOLAM: A Novel Approach of Spatial Aggregation in SOLAP Systems

    Get PDF
    In the context of a data driven approach aimed to detect the real and responsible factors of the transmission of diseases and explaining its emergence or re-emergence, we suggest SOLAM (Spatial on Line Analytical Mining) system, an extension of Spatial On Line Analytical Processing (SOLAP) with Spatial Data Mining (SDM) techniques. Our approach consists of integrating EPISOLAP system, tailored for epidemiological surveillance, with spatial generalization method allowing the predictive evaluation of health risk in the presence of hazards and awareness of the vulnerability of the exposed population. The proposed architecture is a single integrated decision-making platform of knowledge discovery from spatial databases. Spatial generalization methods allow exploring the data at different semantic and spatial scales while reducing the unnecessary dimensions. The principle of the method is selecting and deleting attributes of low importance in data characterization, thus produces zones of homogeneous characteristics that will be merged

    Long-term healthcare utilisation, costs and quality of life after invasive group B Streptococcus disease: a cohort study in five low-income and middle-income countries

    Get PDF
    Introduction There are no published data on the long-term impact of invasive group B Streptococcus disease (iGBS) on economic costs or health-related quality of life (HRQoL) in low-income and middle-income countries. We assessed the impact of iGBS on healthcare utilisation, costs and HRQoL in Argentina, India, Kenya, Mozambique and South Africa. Methods Inpatient and outpatient visits, out-of-pocket (OOP) healthcare payments in the 12 months before study enrolment, and health-state utility of children and caregivers (using the EuroQol 5-Dimensions-3-Level) were collected from iGBS survivors and an unexposed cohort matched on site, age at recruitment and sex. We used logistic or Poisson regression for analysing healthcare utilisation and zero-inflated gamma regression models for family and health system costs. For HRQoL, we used a zero-inflated beta model of disutility pooled data. Results 161 iGBS-exposed and 439 unexposed children and young adults (age 1–20) were included in the analysis. Compared with unexposed participants, iGBS was associated with increased odds of any healthcare utilisation in India (adjusted OR 11.2, 95% CI 2.9 to 43.1) and Mozambique (6.8, 95% CI 2.2 to 21.1) and more frequent healthcare visits (adjusted incidence rate ratio (IRR) for India 1.7 (95% CI 1.4 to 2.2) and for Mozambique 6.0 (95% CI 3.2 to 11.2)). iGBS was also associated with more frequent days in inpatient care in India (adjusted IRR 4.0 (95% CI 2.3 to 6.8) and Kenya 6.4 (95% CI 2.9 to 14.3)). OOP payments were higher in the iGBS cohort in India (adjusted mean: Int682.22(95682.22 (95% CI Int364.28 to Int1000.16)vsInt1000.16) vs Int133.95 (95% CI Int72.83toInt72.83 to Int195.06)) and Argentina (Int244.86(95244.86 (95% CI Int47.38 to Int442.33)vsInt442.33) vs Int52.38 (95% CI Int1.39toInt−1.39 to Int106.1)). For all remaining sites, differences were in the same direction but not statistically significant for almost all outcomes. Health-state disutility was higher in iGBS survivors (0.08, 0.04–0.13 vs 0.06, 0.02–0.10). Conclusion The iGBS health and economic burden may persist for years after acute disease. Larger studies are needed for more robust estimates to inform the cost-effectiveness of iGBS prevention

    Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation

    Get PDF
    Background: Globally, 15 million infants are born preterm and another 23.2 million infants are born small for gestational age (SGA). Determining burden of preterm and SGA births, is essential for effective planning, modification of health policies and targeting interventions for reducing these outcomes for which accurate estimation of gestational age (GA) is crucial. Early pregnancy ultrasound measurements, last menstrual period and post-natal neonatal examinations have proven to be not feasible or inaccurate. Proposed algorithms for GA estimation in western populations, based on routine new-born screening, though promising, lack validation in developing country settings. We evaluated the hypothesis that models developed in USA, also predicted GA in cohorts of South Asia (575) and Sub-Saharan Africa (736) with same precision.Methods: Dried heel prick blood spots collected 24-72 hours after birth from 1311 new-borns, were analysed for standard metabolic screen. Regression algorithm based, GA estimates were computed from metabolic data and compared to first trimester ultrasound validated, GA estimates (gold standard).Results: Overall Algorithm (metabolites + birthweight) estimated GA to within an average deviation of 1.5 weeks. The estimated GA was within the gold standard estimate by 1 and 2 weeks for 70.5% and 90.1% new-borns respectively. Inclusion of birthweight in the metabolites model improved discriminatory ability of this method, and showed promise in identifying preterm births. Receiver operating characteristic (ROC) curve analysis estimated an area under curve of 0.86 (conservative bootstrap 95% confidence interval (CI) = 0.83 to 0.89); P \u3c 0.001) and Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% and specificity of 77.6%.Conclusion: Metabolic gestational age dating offers a novel means for accurate population-level gestational age estimates in LMIC settings and help preterm birth surveillance initiatives. Further research should focus on use of machine learning and newer analytic methods broader than conventional metabolic screen analytes, enabling incorporation of region-specific analytes and cord blood metabolic profiles models predicting gestational age accurately

    Group B streptococcus infection during pregnancy and infancy: estimates of regional and global burden

    Get PDF
    Background: Group B streptococcus (GBS) colonisation during pregnancy can lead to invasive GBS disease (iGBS) in infants, including meningitis or sepsis, with a high mortality risk. Other outcomes include stillbirths, maternal infections, and prematurity. There are data gaps, notably regarding neurodevelopmental impairment (NDI), especially after iGBS sepsis, which have limited previous global estimates. In this study, we aimed to address this gap using newly available multicountry datasets. Methods: We collated and meta-analysed summary data, primarily identified in a series of systematic reviews published in 2017 but also from recent studies on NDI and stillbirths, using Bayesian hierarchical models, and estimated the burden for 183 countries in 2020 regarding: maternal GBS colonisation, iGBS cases and deaths in infants younger than 3 months, children surviving iGBS affected by NDI, and maternal iGBS cases. We analysed the proportion of stillbirths with GBS and applied this to the UN-estimated stillbirth risk per country. Excess preterm births associated with maternal GBS colonisation were calculated using meta-analysis and national preterm birth rates. Findings: Data from the seven systematic reviews, published in 2017, that informed the previous burden estimation (a total of 515 data points) were combined with new data (17 data points) from large multicountry studies on neurodevelopmental impairment (two studies) and stillbirths (one study). A posterior median of 19·7 million (95% posterior interval 17·9–21·9) pregnant women were estimated to have rectovaginal colonisation with GBS in 2020. 231800 (114 100–455000) early-onset and 162 200 (70200–394 400) late-onset infant iGBS cases were estimated to have occurred. In an analysis assuming a higher case fatality rate in the absence of a skilled birth attendant, 91 900 (44800–187 800) iGBS infant deaths were estimated; in an analysis without this assumption, 58300 (26 500–125800) infant deaths from iGBS were estimated. 37100 children who recovered from iGBS (14600–96200) were predicted to develop moderate or severe NDI. 40500 (21500–66 200) maternal iGBS cases and 46200 (20 300–111300) GBS stillbirths were predicted in 2020. GBS colonisation was also estimated to be potentially associated with considerable numbers of preterm births. Interpretation: Our analysis provides a comprehensive assessment of the pregnancy-related GBS burden. The Bayesian approach enabled coherent propagation of uncertainty, which is considerable, notably regarding GBS-associated preterm births. Our findings on both the acute and long-term consequences of iGBS have public health implications for understanding the value of investment in maternal GBS immunisation and other preventive strategies

    Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in south Asia and sub-Saharan Africa

    Get PDF
    Background: Babies born early and/or small for gestational age in Low and Middle-income countries (LMICs) contribute substantially to global neonatal and infant mortality. Tracking this metric is critical at a population level for informed policy, advocacy, resources allocation and program evaluation and at an individual level for targeted care. Early prenatal ultrasound examination is not available in these settings, gestational age (GA) is estimated using new-born assessment, last menstrual period (LMP) recalls and birth weight, which are unreliable. Algorithms in developed settings, using metabolic screen data, provided GA estimates within 1-2 weeks of ultrasonography-based GA. We sought to leverage machine learning algorithms to improve accuracy and applicability of this approach to LMICs settings.Methods: This study uses data from AMANHI-ACT, a prospective pregnancy cohorts in Asia and Africa where early pregnancy ultrasonography estimated GA and birth weight are available and metabolite screening data in a subset of 1318 new-borns were also available. We utilized this opportunity to develop machine learning (ML) algorithms. Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset. Mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate performance. Bootstrap procedures were used to estimate confidence intervals (CI) for RMSE and MAE. For pre-term birth identification ROC analysis with bootstrap and exact estimation of CI for area under curve (AUC) were performed.Results: Overall model estimated GA had MAE of 5.2 days (95% CI 4.6-6.8), which was similar to performance in SGA, MAE 5.3 days (95% CI 4.6-6.2). GA was correctly estimated to within 1 week for 85.21% (95% CI 72.31-94.65). For preterm birth classification, AUC in ROC analysis was 98.1% (95% CI 96.0-99.0; p \u3c 0.001). This model performed better than Iowa regression, AUC Difference 14.4% (95% CI 5-23.7; p = 0.002).Conclusions: Machine learning algorithms and models applied to metabolomic gestational age dating offer a ladder of opportunity for providing accurate population-level gestational age estimates in LMICs settings. These findings also point to an opportunity for investigation of region-specific models, more focused feasible analyte models, and broad untargeted metabolome investigation

    Curcumin loaded waste biomass resourced cellulosic nanofiber cloth as a potential scaffold for regenerative medicine: An in-vitro assessment

    Get PDF
    This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications

    Enhancing the Quality of "Produced Water" by Activated Carbon

    Get PDF
    The main objective is to contribute via this study, in solving an environmental issue and helping Qatar in finding suitable water resources; useful in agriculture. Qatar faces diverse water challenges; the number one that threats here is scarcity as water is not renewable. Due to scarcity of good quality water, reusing of low quality and contaminated water is highly increasing in Qatar. The main source of water in Qatar is desalination stations. Most of the desalinated water is for human usage. Agriculture in Qatar depends mainly on underground water; it is available but always saline and found in insufficient quantities. Due to the increasing demand for water among industries and irrigation, using other alternative water resources such as produced water during oil and gas extraction would be of importance. Generally, produced water is the water that exists in subsurface and is moved to the surface through oil and gas processes. The volume of produced water and pollutants concentration vary depending on the nature and location of the oil products. It represents the major waste stream related to oil and gas processes. Large volume of produced water generated in Qatar has the potential to enhance the water resources. The crucial goal of produced water management is to eliminate dissolved harmful components and use it for beneficial uses that can efficiently improve environmental impact and water shortage. An exclusive characteristic of produced water comparing to other wastewater resources is the large variation and complexity in water chemistry. This would play a vital role in the remediation processes.qscienc

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    International audienc

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Machine learning prediction of gestational age from metabolic screening markers resistant to ambient temperature transportation: Facilitating use of this technology in low resource settings of South Asia and East Africa.

    Get PDF
    BACKGROUND: Knowledge of gestational age is critical for guiding preterm neonatal care. In the last decade, metabolic gestational dating approaches emerged in response to a global health need; because in most of the developing world, accurate antenatal gestational age estimates are not feasible. These methods initially developed in North America have now been externally validated in two studies in developing countries, however, require shipment of samples at sub-zero temperature. METHODS: A subset of 330 pairs of heel prick dried blood spot samples were shipped on dry ice and in ambient temperature from field sites in Tanzania, Bangladesh and Pakistan to laboratory in Iowa (USA). We evaluated impact on recovery of analytes of shipment temperature, developed and evaluated models for predicting gestational age using a limited set of metabolic screening analytes after excluding 17 analytes that were impacted by shipment conditions of a total of 44 analytes. RESULTS: With the machine learning model using all the analytes, samples shipped in dry ice yielded a Root Mean Square Error (RMSE) of 1.19 weeks compared to 1.58 weeks for samples shipped in ambient temperature. Out of the 44 screening analytes, recovery of 17 analytes was significantly different between the two shipment methods and these were excluded from further machine learning model development. The final model, restricted to stable analytes provided a RMSE of 1.24 (95% confidence interval (CI) = 1.10-1.37) weeks for samples shipped on dry ice and RMSE of 1.28 (95% CI = 1.15-1.39) for samples shipped at ambient temperature. Analysis for discriminating preterm births (gestational age <37 weeks), yielded an area under curve (AUC) of 0.76 (95% CI = 0.71-0.81) for samples shipped on dry ice and AUC of 0.73 (95% CI = 0.67-0.78) for samples shipped in ambient temperature. CONCLUSIONS: In this study, we demonstrate that machine learning algorithms developed using a sub-set of newborn screening analytes which are not sensitive to shipment at ambient temperature, can accurately provide estimates of gestational age comparable to those from published regression models from North America using all analytes. If validated in larger samples especially with more newborns <34 weeks, this technology could substantially facilitate implementation in LMICs
    corecore