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Machine learning guided postnatal
gestational age assessment using new-born
screening metabolomic data in South Asia
and sub-Saharan Africa
Sunil Sazawal1*†, Kelli K. Ryckman2†, Sayan Das1†, Rasheda Khanam3, Imran Nisar4, Elizabeth Jasper2, Arup Dutta1,
Sayedur Rahman5, Usma Mehmood4, Bruce Bedell2, Saikat Deb6, Nabidul Haque Chowdhury5, Amina Barkat4,
Harshita Mittal1, Salahuddin Ahmed5, Farah Khalid4, Rubhana Raqib7, Alexander Manu8, Sachiyo Yoshida8,
Muhammad Ilyas4, Ambreen Nizar4, Said Mohammed Ali6, Abdullah H. Baqui3†, Fyezah Jehan4†,
Usha Dhingra1† and Rajiv Bahl8*†

Abstract

Background: Babies born early and/or small for gestational age in Low and Middle-income countries (LMICs)
contribute substantially to global neonatal and infant mortality. Tracking this metric is critical at a population level
for informed policy, advocacy, resources allocation and program evaluation and at an individual level for targeted
care. Early prenatal ultrasound examination is not available in these settings, gestational age (GA) is estimated using
new-born assessment, last menstrual period (LMP) recalls and birth weight, which are unreliable. Algorithms in
developed settings, using metabolic screen data, provided GA estimates within 1–2 weeks of ultrasonography-
based GA. We sought to leverage machine learning algorithms to improve accuracy and applicability of this
approach to LMICs settings.

Methods: This study uses data from AMANHI-ACT, a prospective pregnancy cohorts in Asia and Africa where early
pregnancy ultrasonography estimated GA and birth weight are available and metabolite screening data in a subset
of 1318 new-borns were also available. We utilized this opportunity to develop machine learning (ML) algorithms.
Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset.
Mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate performance. Bootstrap
procedures were used to estimate confidence intervals (CI) for RMSE and MAE. For pre-term birth identification ROC
analysis with bootstrap and exact estimation of CI for area under curve (AUC) were performed.
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Results: Overall model estimated GA had MAE of 5.2 days (95% CI 4.6–6.8), which was similar to performance in
SGA, MAE 5.3 days (95% CI 4.6–6.2). GA was correctly estimated to within 1 week for 85.21% (95% CI 72.31–94.65).
For preterm birth classification, AUC in ROC analysis was 98.1% (95% CI 96.0–99.0; p < 0.001). This model performed
better than Iowa regression, AUC Difference 14.4% (95% CI 5–23.7; p = 0.002).

Conclusions: Machine learning algorithms and models applied to metabolomic gestational age dating offer a
ladder of opportunity for providing accurate population-level gestational age estimates in LMICs settings. These
findings also point to an opportunity for investigation of region-specific models, more focused feasible analyte
models, and broad untargeted metabolome investigation.

Keywords: Pre-term births, Machine learning, Gestational age, New born screening

Background
Of 15 million preterm births annually, 90% happen in
Low and Middle Income Countries (LMICs) [1, 2]
contributing to 1 million deaths < 5 years, 35% of deaths
< 28 days [3]. Further 23.3 million infants (19.3% of live
births) are born small for gestational age (SGA) in
LMICs. Reduction by 10.0% in these would reduce neo-
natal deaths by 254,600 deaths [4]. Identifying and track-
ing this metric is therefore critical for advocacy,
surveillance, research, evaluation of preventive strategies,
and care of these high risk infants in LMICs. These in
turn are essential to achieving United Nations Sustain-
able Development Goal 3 target 3.25 [2, 5](elimination
of preventable under-five deaths by 2030).
The estimation of accurate gestational age at birth is

essential for identifying both preterm and SGA births.
Early ultrasonography examination, considered as gold
standard for gestational age (GA) assessment is unavail-
able due to high equipment cost and lack of trained
manpower in most LMICs settings. Recall of last men-
strual period (LMP) [6] used in these settings is unreli-
able in estimation of GA [7]. Postnatal methods, birth
weight and standardized scoring system (Dubowitz or
Ballard scales) have poor reliability and high inter user
variability limiting their usage [8–11].
In global health a need for novel tools is required that

could help monitor these metrics in LMIC countries on a
population scale [12]. Algorithms developed in three
North American settings using routine metabolic screen
data to derive GA estimates, have been shown to provide
accurate estimates to within 1–2 weeks of ultrasonography
basedGA [13–15]. Limited data for external validity of
these methods in LMIC populations [16, 17] demon-
strated satisfactory performance but lower accuracy for
GA predictions especially among SGA new-borns in
Africa and Asia. Reported publications used conventional
statistical modelling approaches like linear/logistic regres-
sion and discriminant analysis. These statistical methods
mainly focus on inference from fitting of a project-specific
probability model [18]. Recent advances in Machine

Learning (ML) techniques and big data analysis, allows for
efficient handling of large numbers of predictors while in-
corporating non-linear association and complex interac-
tions. ML techniques are more robust in nature and they
mainly deal with the prediction of outcomes by using
general-purpose learning algorithms to find patterns in a
dataset without assumptions needed for conventional
modelling. Recently, ML approaches has been shown to
help preterm identification in hospital setting [19].
We hypothesized that application of ML to metabolite

profile datasets of Alliance for Maternal and New-born
Health Improvement (AMANHI) All children thrive
(ACT) cohorts (representing both South Asia and Sub-
Saharan Africa) would potentially improve the predic-
tion of GA as compared to conventional approaches
previously reported. The rationale for these cohorts and
associated bio-bank procedures, and cohort characteris-
tics have been described in previous publications [20,
21]. One of the objectives of the AMANHI study was to
develop and validate programmatically feasible ap-
proaches to accurately assess the gestational age of ba-
bies after they are born. Additionally this method will
not be dependent on the North American population
datasets for generation of equation coefficients and en-
able regional adjustments in the future. Among various
ML classifiers, we chose to use random forest as particu-
larly well suited for clinical predictions [22]. We report
the performance of our machine learning based GA esti-
mation algorithms.

Methods
Study population
This study was undertaken using data from the Alliance
for Maternal and New-born Health Improvement
(AMANHI) All children thrive (ACT), community
based, prospective pregnancy and New-born cohorts
from Pemba (Tanzania), Sylhet (Bangladesh) and
Karachi (Pakistan). These studies received ethical ap-
proval from the local and institutional ethics committees
of all the three sites: ICDDR, B and John Hopkins
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University for Bangladesh, Aga Khan University for
Pakistan and ZAMREC for Tanzania. The protocols
were also approved by the Ethical Review Committee
(ERC) at World Health Organization (WHO). Briefly,
women were enrolled in early pregnancy and followed
through delivery and the postpartum period (supple-
mentary Fig. 1). All pregnant women were eligible to
participate in the study. Written informed consent was
obtained from all participants prior to study enrolment
for collection of maternal and new-born data and sam-
ples. GA was established by ultrasonography [23] at
screening using the fetal crown rump length (if < 14
weeks gestation) [24] or biparietal diameter and femur
length (if ≥14 weeks) [23, 24]. All fetal biometry mea-
surements were measured twice and then averaged for
gestational age calculations [23, 25]. Birth weight (5 g
sensitivity) was measured using standard new-born
weighing scale (SECA corporation, Columbia, MD).

Sample collection and processing
The metabolic screening data from 1283 samples used
for this analysis was generated as part of the AMANHI
collaboration with Department of Epidemiology, College
of Public Health, University of Iowa, for evaluating ex-
ternal validity of the GA estimation methods developed
based on American samples [13, 17]. An overview is
provided in consort flow diagram (Fig. 1) and protocol
process flow (supplementary Fig. 1). Heel prick blood
spots were obtained on a protein saver card (WhatmanR

903, GE healthcare, USA), within 24–72 h of birth from
new-born’s as per standard procedures. All 903 cards
were labelled with barcoded unique identifier (ID’s),
were air-dried and stored in air tight Ziplock bags with
desiccant at − 80 °C. The 903 cards were shipped in dry
ice to the University of Iowa where they were examined
for quality. Then samples were sent to State Hygienic
Laboratory, Ankeny, Iowa, USA at regular intervals (en-
suring processing before potency window). Sixty-six me-
tabolites (Supplementary Table 4) which included amino
acid, acylcarnitines, enzymes and hormones were ana-
lysed using tandem mass spectrometry. Only singleton
births (women who gave birth to only one child during a
delivery, excluding twins, triplets) were included in the
final analysis since analyte values are associated with
birth status [26]. We excluded 35 non-singleton preg-
nancies in the final analysis.

Selection of the machine learning algorithm
For implementing the machine learning algorithms, the
dataset was divided into training and test datasets. This
selection was made without replacement. Training data-
set used was derived by combining stratified sampling of
80% from Africa and Asia separately. A K fold cross val-
idation method was used as resampling procedure to

evaluate the machine learning algorithms which effect-
ively performed a 10 fold cross validation, with three re-
peats [27]. Performance of the models was assessed by
comparing RMSE and MAE values on the training data-
set. Four ML algorithms considered appropriate for this
analysis; artificial neural network (ANN), decision tree
(DT), support vector machines (SVM) and random for-
est (RF) were evaluated and compared [28]. Amongst
these RF regressor performed better and was selected for
testing on test dataset (results provided in Supplemen-
tary Table 1).

Architecture of random Forest Regressor
ML models were generated using metabolite profiles
along with birth weight and gender. RF regressor model
for this analysis was built using 1) bootstrap sampling
-with replacement and 2) Random feature –m= 10 in RF
regressor. In this generation procedure was repeated
until 10 decision trees were created to form a randomly
generated “Forest”. We denoted the hyper-parameters
for RF regressor as “mtry” (a variable imputed in the
model) at each split node for performing regression; the
default value of “mtry” is p/3 where p is the number of
predictors [29]. Random forest is an algorithm built by
multiple decision trees. So it is important to choose the
hyper-parameter as it defines how each tree will be built.

Implementation of random Forest Regressor
Sklearn.ensemble [30] (Random Forest Regressor pack-
age), a Python module was used for running the RF re-
gressor. NumPy, Scipy and Pandas were used as python
dependencies for running the module. R coding was
used to create train and test datasets.

Models used for the analysis
Four different models were used for the prediction of
Gestational Age. (Supplementary Table 3; details of vari-
ables in the models provided in Supplementary Table 4).
Model 1: only one variable per metabolite (for all 66

metabolites) from the profile of the blood metabolites
along with birthweight and gender.
Model 2: was designed to replicate model published

by Ryckman et al. [13] which included the linear,
squared and cubic values of the metabolites as
predictors.
Model 3: was designed to replicate the model pub-

lished by Wilson et al. 2017 [15] which included the lin-
ear, squared and cubic values of the metabolites along
with birthweight and gender as predictors.
Model 4 (selected Model): Contained all the predic-

tors used in the above three models.
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Best model selection
The best model was selected on the basis of root mean
square error (RMSE) and mean absolute error (MAE).
The RMSE of a predicted model with respect to the

estimated variable xmodel has been defined as the square
root of the mean squared error [31].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Xobs;i‐Xmodel;i

� �2

n

s

Where, xobs is observed values, xmodel is modelled
values at time i.
Mean absolute error (MAE) has been calculated as

MAE ¼
Pn

i¼1 yi−χ i
�

�

�

�

n
¼

Pn
i¼1 eij j
n

where xi is the prediction and yi is the true value.

Confidence intervals for RMSE and MAE
Efficient computation of RMSE, MAE values and 95%
confidence interval were estimated using bootstrapped
procedures [32] (Python package, (Bootstrapped0.0.2)
https://pypi.org/project/bootstrapped/) and for t with a
fixed seed number of 1 using boot [33] and metrics
packages in R.

Fig. 1 Consort cohort flow diagram
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ROC analysis for evaluating discriminatory ability of the
ML based GA
For ROC analysis we used Stata 16.1 (Stata Corp LLC,
Texas USA) and MedCalc (MedCalc Software Ltd.
Belgium). The predictions of the continuous outcome
(predicted GA) were dichotomized to < 37 weeks (pre-
term birth) and > =37 weeks (term birth) for carrying
out ROC analysis. Generation of ROC curve and AUC
estimation was performed and interpreted using stand-
ard methods [34, 35]. We estimated Youden index J [36]

J ¼ max sensitivityf c½ � þ specificityf c½ �−1f g

where c ranges over all possible criterion values.
Graphically, J is the maximum vertical distance
between the ROC curve and the diagonal line. Boot-
strapped 95% CI for Youden index and its correspond-
ing criterion value were estimated [37, 38]. 95% CI for
sensitivities and specificities were also estimated for a
range of fixed and pre-specified sensitivities/specific-
ities [33] and 95% CI estimated using bootstrapping
[37, 38]. Comparison of ROC curves estimating differ-
ence, confidence interval and p-value were also per-
formed using bootstrap methods [39, 40]. For the
Bootstrap estimation a fixed seed was used to enable
replication of the analysis.

Results
General characteristic of the cohort
Data from all 1318 new-borns having new-born meta-
bolic screen analytes were included in the current ana-
lysis. Of these 742 samples were from Africa and 576
from Asia (Pakistan and Bangladesh). Baseline character-
istics of the sample are provided in Table 1. The distri-
bution of male and female subjects in the cohort was
almost in the ratio of 1:1. The mean GA as confirmed by
ultrasound was 38.5 ± 1.68 weeks (mean ± SD). Sam-
ple included 153 (11.6%) preterm births, 199 (15.1%)
low birth weight and 271 (20.6%) SGA new-borns.
Birth weight in African new-borns (3240.75 ± 585.88
g) tended to be higher than Asian new-borns
(2774.55 ± 513.99 g).

Comparison of performance of gestational age estimation
models
Initially we evaluated 4 models for performance predict-
ing gestational age (Supplementary Table 4), the model
1 with only base terms for analytes was least accurate
RMSE 1.38, model 2 using variables in final Iowa regres-
sion model [13] had RMSE of 1.29 and model 3 using
variables in Ontario regression model [14] had RMSE
1.20 (Supplementary Table 2), the final all-inclusive
model providing a RMSE of 1.02 (95% CI 0.91–1.14) was
selected and evaluated further. For identification of

Table 1 Cohort Characteristics Of Infants Included In The Metabolic Screening Study

Heel Prick Samples All sites
Combined
(Total cohort)

Asia
(Pakistan and Bangladesh)

Africa
(Tanzania)

N = 1318 N = 576 N = 742

Gender

Male 695 (52.7%) 268 (46.5%) 428 (57.6%)

Female 623 (47.3%) 308 (53.5%) 315 (42.3%)

Gestational Age
Mean + S.D

38.53 + 1.68 38.35 + 1.67 38.68 + 1.68

> 37 weeks 1165 (88.4%) 492 (85.4%) 673 (90.7%)

< 37 weeks 153 (11.6%) 85 (14.6%) 69 (9.3%)

34–37 weeks 126 (82.4%) 71 (83.5%) 54 (78.3%)

< 34 weeks 27 (17.6%) 14 (16.5%) 15 (21.7%)

Birthweight
(Mean + S.D)

3037.21 + 601.67 2774.55 + 513.99 3240.75 + 585.88

Birth Weight Category, n(%)

≤ 2500 g 199 (15.1%) 153 (26.6%) 46 (6.2%)

> 2500 g 1119 (84.9%) 423 (73.4%) 696 (83.8%)

SGA Status

Yes 272 (20.6%) 91 (15.8%) 181 (24.4%)

Multiple Birth Status 35 (2.7%) 8 (1.4%) 27 (3.6%)

Newborn Sample Collected (Hrs), Mean ± SD 49.0 ± 16.2 52.1 ± 19.4 46.6 ± 12.7
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preterm births, AUC of Model 4 was significantly better
than model 1 [3.6% (95%CI − 1.2 to 8.5; p = 0.014)] and
Model 2 [2.5% (95% CI − 2.2 to 7.3; p = 0.03)] (Supple-
mentary Fig. 2).
Overall model estimated gestational age had a mean

absolute error (MAE) of 5.2 days (95% CI 4.5–6.8), com-
pared to gold standard ultrasound dating. Accuracy was
slightly lower in Africa MAE 5.3 days (95% CI 54.8–6.2)
than Asia MAE 5 days (95% CI 4.3–6.2) (Table 2). Con-
trary to the results from external validity of regression
models [15, 17], performance in SGA new-borns was
not appreciably reduced, MAE 5.3 days (95% CI 4.6–6.2
days). GA was correctly estimated to within 1 week of
ultrasound-assigned values for 85.21% (95% CI 72.31–
94.65) overall, 83.2% (95% CI 78.31–90.05) in African
and 87.7% (95% CI 76.63–95.39) in Asian new-borns. Es-
timations performed as well in SGA new-borns within 1
week 83.9% (95% CI 71.21–92.32) (Table 2).
To evaluate impact of using a regionally trained algo-

rithm (an important future prospect), we repeated the
analysis with machine learning being trained by African
sample for Africa estimations and Asian sample for Asia
estimations. The model performance in spite of reduced
samples for training improved both for Africa and Asia.
The precision of MAE improved rather being reduced
for Africa to 5 days (95% CI 4.1–6.0) and Asia to 4.8 days
(95% CI 4.1–6.1) (Table 2). The same pattern was seen
for RMSE (Table 2).

Model discrimination of preterm birth
For the ability to classify correctly preterm births (GA <
37 weeks), model in ROC analysis showed an area under
curve (AUC) of 92.6% (BC 95% CI 87.5–96.1; p < 0.001).
Criterion of ≥37 providing a sensitivity of 100% and spe-
cificity of 92.61% (Fig. 2). This model provided a signifi-
cant improvement (difference in AUC 14.4% (95% CI
5.0–23.7; p = 0.002) over predicting GA by regression

models in the same dataset, AUC 84% (95 CI 78.6–88.0),
(Fig. 3b). There was no significant difference, 1.3% (95%
CI − 1.5-4.3; p = 0.333) in AUC between Africa and Asia
(Fig. 3a). The AUC between SGA and non-SGA new-
borns also did not differ (AUC difference 1.7%;(95% CI
− 1.2-4.8; p = 0.891) (Fig. 3c).

Performance across gestational age categories
Estimation of RMSE and MAE as well as cross tabula-
tion of actual and predicted GA by 2 weekly categories
(Table 3), indicated that the accuracy of the current set
of analytes was diminishing only at < 35.

Discussion
This study has highlighted promising application of ML
methodology to birth weight and new-born metabolomic
screening data for improving postnatal prediction of ges-
tation age at birth and discriminating between preterm
and term new-borns. It also demonstrated ability of
using LMICs data for training ML models and not need-
ing external estimators from developed country datasets.
In LMICs setting of South Asia and Sub-Saharan Africa,
GA estimates from ML model were within an average of
5.2 days of ultrasonography based GA. The ML esti-
mated GA enabled discrimination between pre-term and
term births, AUC 98% was significantly better than re-
gression estimated GA AUC 84%. The optimal criterion
of ≤37 weeks providing a sensitivity of 100% and specifi-
city of 92.616%.
As against lower performance of previous approaches

[13, 15–17], in estimating GA in SGA sub population,
our ML model estimates were within 5.3 days of ultra-
sonography based GA. This also reflected in the finding
of a similar proportion with estimated gestation being
within 1 week of the ultrasound confirmed gestation,
85.2% overall vs 83.9% in SGA subgroup. Use of data
with 80% each of Asian and African data for training the

Table 2 Mean Abs Error and RMSE in weeks in final machine learning model
STATISTICS Cohort Africa Asia

Overall SGA Overall SGA Overall SGA

Training Dataset Test Data Set- Pooled remaining Test Data Set - remaining Test Data Set- remaining

80% Pemba Samples + 80%
Asian samples

20% PembaSamples + 20% Asiansamples 20% Pemba Samples 20% Asian Samples

MAE (95% CI)* 0.74 (0.65–0.98) 0.76 (0.65–0.88) 0.75 (0.61–0.89) 0.88 (0.75–1.16) 0.72 (0.62–0.88) 0.73 (0.61–0.95)

RMSE(95% CI)* 1.02 (0.91–1.14) 1.05 (0.91–1.19) 1.04 (0.89–1.16) 1.20 (1.10–1.31) 1.00 (0.89–1.16) 1.01 (0.93–1.19)

1 week difference (%)* 85.21 (72.31–94.65) 83.9 (71.21–92.32) 83.21 (78.31–90.05) 72 (65.67–79.34) 87.71 (76.63–95.39) 87.09 (77.67–94.21)

2 weeks difference (%)* 99.61 (91.42–100) 98.31 (89.74–100) 100 (93.32–100) 100 (92–79-100) 99.12 (91.56–100) 99.15 (90.45–100)

Training Dataset 80% Africa
samples for Africa and 80%
Asia samples for Asia

Test Dataset
(20% Africa samples)

Test Dataset
(20% Asia samples

MAE (95% CI)* 0.71 (0.58–0.85) 0.83 (0.71–1.10) 0.68 (0.58–0.87) 0.71 (0.62–0.83)

RMSE (95% CI)* 0.96 (0.82–1.07) 1.13 (1.01–1.27) 0.93 (0.82–01.05) 0.97 (0.84–1.08)

*Bootstrapped,
*Detailed description of the analytes used in the models have been given in supplementary information
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models, was associated with some variation in predictive
accuracy for Asia (average of 5 days) compared to Africa
(average of 5.2 days). Using region specific data for train-
ing reduced the variation to 4.8 and 4.9 days respectively
and improved the precision in spite of reduced sample
size of training dataset (Table 2). Being preliminary
proof of principle, these findings provide a vision for fu-
ture implementations, where in region specific training

datasets may improve global application of metabolo-
mics based data for gestational age assessment.
Our study had a number of important strengths and

also some limitations which need consideration while
interpreting the results. The strengths included 1) a
sampling frame which utilized samples from both South
Asia and East Africa, home to most of the global mortal-
ity associated with preterm and SGA births, 2) the study

Fig. 2 ROC analysis of Machine Learning Final Model in discrimination of gestation < 37 weeks

Fig. 3 ROC analysis comparing Machine Learning performance. A By site. B With the estimates obtained from primary published regression
analysis. C By SGA infants
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design was nested in a well-described population-based
cohort of pregnancy with WHO coordinated and harmo-
nized protocols and SOP, 3) Active surveillance for early
pregnancy identification with added measures (men-
strual calendar, pregnancy), culminating in harmonized
ultrasonography based gestation assessment between 8
and 19 weeks of gestation and 4) Sample collection, stor-
age and shipment SOP based on pilot QC, resulting in
high quality of samples. The primary limitation of this
study is the participation bias against early preterm and
early deaths before sample collection window. Relatively
small proportion of actual births in this sub-sample
limits our ability to comment on model performance in
these sub-groups. Our finding of lower accuracy in pre-
term ≤34 weeks may either reflect lack of association of
the metabolites in that sub-group, a function of lack of
sample in that group and/or bias introduced by selective
exclusion of early deaths. Additionally, we were working
with the limitation of a smaller sample size as compared
to the usual sample sizes in machine learning universe.
We did try to use methods appropriate to accommodat-
ing smaller sample sizes, however would not have been
protected against extreme chance affecting the sample.
The ability to train the model and precision of estimates
is somewhat reassuring but would need confirmation.
Preterm births and SGA account for a substantial bur-

den of mortality in first 5 years [3, 4]. Tracking these
metrics is therefore critical for advocacy, allocation of
resources, for surveillance, research, evaluation of pre-
ventive strategies, and care of these high-risk infants in
low- and middle-income countries [3, 41]. At the core of
this is the estimation of gestational age at birth and

being able to discriminate pre-term births accurately.
Difference in GA at birth of a week impacts neonatal
morbidity, mortality, and long-term outcomes signifi-
cantly [42, 43]. Our findings provide evidence that ML
based gestational dating models improve upon the
currently-used postnatal gestational age estimation
methods [6, 8, 10, 11, 13–17]. However while consider-
ing implementation of metabolic gestational dating ap-
proaches for robust population-level estimates, current
challenges and future opportunities that machine learn-
ing brings to this domain need consideration. Heel prick
samples for new-born screening are typically collected at
least 24 h after birth to accommodate postpartum fluctu-
ations in analyte levels. This introduces a bias due to
early deaths selectively occurring in pre-term births, fur-
ther in LMICs settings as most mother-infant pairs do
not stay in hospital beyond 24 after delivery [44]. In
most LMICs new-born screening is not a standard prac-
tice and will entail challenges in sample collection and
processing for metabolic screening, therefore scale up
needs to include rethinking about development of cord-
blood-specific models restricted to analytes less suscep-
tible to fluctuations in the postnatal environment, estab-
lishing a profile of fewer selected metabolites that are
measurable using less sophisticated equipment. While
rethinking and investigating low-tech variations suitable
to LMICs settings, also to consider are, newer high
throughput trans proteome/metabolome platforms
which are now becoming affordable (i.e. Seers Nano
peptide technology [45]). An untargeted metabolomic
approach may improve our ability to estimate GA post-
natally while also identifying infants at risk of a variety

Table 3 Performance and Concordance of predicted gestational age by actual gestation age group
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of conditions. Use of a broader spectrum of analytes
may also help select a restrictive model for cord blood.
Building on this study, use of ML methodology would
positively influence development of all the above ap-
proaches, due to flexibility, ability to use regional data
for ML and not requiring circling back to accumulating
large datasets with new intended analyte profiles.

Summary
Towards implementing preterm birth surveillance initia-
tives [46] ML algorithms and models applied to metabo-
lomic gestational age dating offer an opportunity ladder
to provide accurate population-level gestational age esti-
mates in LMICs settings. Further research should focus
on application of ML enabling investigation and incorp-
oration of region-specific models, evaluating broad
untargeted metabolome or more focused feasible analyte
pool with ML approaches. Derivation and optimization
of cord blood metabolic profiles models predicting ges-
tational age accurately would usher a new feasibility for
use of this approach in LMICs settings.
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