11 research outputs found

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Low cost and state of the art methods to measure nitrous oxide emissions

    Get PDF
    This letter provides an overview of the available measurement techniques for nitrous oxide (N2O) flux measurement. It is presented to aid the choice of the most appropriate methods for different situations. Nitrous oxide is a very potent greenhouse gas; the effect of 1 kg of N2O is estimated to be equivalent to 300 kg of CO2. Emissions of N2O from the soil have a larger uncertainty compared to other greenhouse gases. Important reasons for this are low atmospheric concentration levels and enormous spatial and temporal variability. Traditionally such small increases are measured by chambers and analyzed by gas chromatography. Spatial and temporal resolution is poor, but costs are low. To detect emissions at the field scale and high temporal resolution, differences at tens of ppt levels need to be resolved. Reliable instruments are now available to measure N2O by a range of micrometeorological methods, but at high financial cost. Although chambers are effective in identifying processes and treatment effects and mitigation, the future lies with the more versatile high frequency and high sensitivity sensors

    Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia

    No full text
    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an “Ammonia Measurement by ANnular Denuder with online Analysis” (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully account for this difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes

    FLUXNET-CH4: A global, multi-ecosystem dataset and analysis

    No full text
    Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions, including their seasonality, due to quasi-continuous and high temporal resolution of flux measurements, coincident measurements of carbon, water, and energy fluxes, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we 1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4- community-product/). FLUXNET-CH4 includes half-hourly and daily gap-filled and non gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we 2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally, because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands and because freshwater wetlands are a substantial source of total atmospheric CH4 emissions; and 3) provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions, but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20° S to 20° N) the spring onset of elevated CH4 emissions starts three days earlier, and the CH4 emission season lasts 4 days longer, for each degree C increase in mean annual air temperature. On average, the onset of increasing CH4 emissions lags soil warming by one month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling, and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). The FLUXNET-CH4 dataset provides an open-access resource for CH4 flux synthesis, has a range of applications, and is unique in that it includes coupled measurements of important CH4 drivers such as GPP and temperature. Although FLUXNET-CH4 could certainly be improved by adding more sites in tropical ecosystems and by increasing the number of site-years at existing sites, it is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4408468. Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/, and a complete list of the 79 individual site data DOIs is provided in Table 2 in the Data Availability section of this document.ISSN:1866-359

    FLUXNET-CH4: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands

    No full text
    Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    No full text
    Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible
    corecore