1,151 research outputs found

    Thirty years of the international journal of intelligent systems: a bibliometric review

    Get PDF
    The International Journal of Intelligent Systems was created in 1986. Today, the journal is 30 years old. To celebrate this anniversary, this study develops a bibliometric review of all of the papers published in the journal between 1986 and 2015. The results are largely based on the Web of Science Core Collection, which classifies leading bibliographic material by using several indicators including total number of publications and citations, the h-index, cites per paper, and citing articles. Thework also uses theVOS viewer software for visualizing the main results through bibliographic coupling and co-citation. The results show a general overview of leading trends that have influenced the journal in terms of highly cited papers, authors, journals, universities and countries. C 2016 Wiley Periodicals, Inc

    Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview

    Get PDF
    Since the discovery of the Vascular Endothelial Growth Factor (VEGF) and its leading role in the angiogenic process, this has been seen as a promising molecule for promoting neovascularization in the infarcted heart. However, even though several clinical trials were initiated, no therapeutic effects were observed, due in part to the short half life of this factor when administered directly to the tissue. In this context, drug delivery systems appear to offer a promising strategy to overcome limitations in clinical trials of VEGF

    Adipose-derived stem cells combined with Neuregulin-1 delivery systems for heart tissue engineering

    Get PDF
    Myocardial infarction (MI) is the leading cause of death worldwide and extensive research has therefore been performed to find a cure. Neuregulin-1 (NRG) is a growth factor involved in cardiac repair after MI. We previously described how biocompatible and biodegradable microparticles, which are able to release NRG in a sustained manner, represent a valuable approach to avoid problems related to the short half-life after systemic administration of proteins. The effectiveness of this strategy could be improved by combining NRG with several cytokines involved in cardiac regeneration. The present study investigates the potential feasibility of using NRG-releasing particle scaffold combined with adipose derived stem cells (ADSC) as a multiple growth factor delivery-based tissue engineering strategy for implantation in the infarcted myocardium. NRG-releasing particle scaffolds with a suitable size for intramyocardial implantation were prepared by TROMS. Next, ADSC were adhered to particle scaffolds and their potential for heart administration was assessed in a MI rat model. NRG was successfully encapsulated reaching encapsulation efficiencies of 92.58 ± 3.84 %. NRG maintained its biological activity after the microencapsulation process. ADSC cells adhered efficiently to particle scaffolds within a few hours. The ADSC-cytokine delivery system developed proved to be compatible with intramyocardial administration in terms of injectability through a 23-gauge needle and tissue response. Interestingly, ADSC-scaffolds were present in the peri-infarted tissue two weeks after implantation. This proof of concept study provides important evidence required for future effectiveness studies and for the translation of this approach

    PEGylated-PLGA microparticles containing VEGF for long term drug delivery

    Get PDF
    The potential of poly(lactic-co-glycolic) acid (PLGA) microparticles as carriers for vascular endothelial growth factor (VEGF) has been demonstrated in a previous study by our group, where we found improved angiogenesis and heart remodeling in a rat myocardial infarction model (Formiga et al., 2010). However, the observed accumulation of macrophages around the injection site suggested that the efficacy of treatment could be reduced due to particle phagocytosis. The aim of the present study was to decrease particle phagocytosis and consequently improve protein delivery using stealth technology. PEGylated microparticles were prepared by the double emulsion solvent evaporation method using TROMS (Total Recirculation One Machine System). Before the uptake studies in monocyte-macrophage cells lines (J774 and Raw 264.7), the characterization of the microparticles developed was carried out in terms of particle size, encapsulation efficiency, protein stability, residual poly(vinyl alcohol) (PVA) and in vitro release. Microparticles of suitable size for intramyocardial injection (5 mu m) were obtained by TROMS by varying the composition of the formulation and TROMS conditions with high encapsulation efficiency (70-90%) and minimal residual PVA content (0.5%). Importantly, the bioactivity of the protein was fully preserved. Moreover, PEGylated microparticles released in phosphate buffer 50% of the entrapped protein within 4 h, reaching a plateau within the first day of the in vitro study. Finally, the use of PLGA microparticles coated with PEG resulted in significantly decreased uptake of the carriers by macrophages, compared with non PEGylated microparticles, as shown by flow cytometry and fluorescence microscopy. On the basis of these results, we concluded that PEGylated microparticles loaded with VEGF could be used for delivering growth factors in the myocardium

    Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model

    Get PDF
    The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF165 administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic–co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF165 with free-VEGF or control empty microparticles in a rat model of ischemia–reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (α-SMA-positive vessels) was observed in animals treated with VEGF microparticles (pb0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (pb0.01). In conclusion, PLGA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies

    Fucosylated Chondroitin Sulfate Inhibits Plasmodium Falciparum Cytoadhesion And Merozoite Invasion.

    Get PDF
    Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.581862-7

    Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia

    Get PDF
    Poly-lactide-co-glycolide (PLGA) microparticles emerged as one of the most promising strategies to achieve site-specific drug delivery. Although these microparticles have been demonstrated to be effective in several wound healing models, their potential in cardiac regeneration has not yet been fully assessed. The present work sought to explore PLGA microparticles as cardiac drug delivery systems. PLGA microparticles were prepared by Total Recirculation One-Machine System (TROMS) after the formation of a multiple emulsion. Microparticles of different size were prepared and characterized to select the most suitable size for intramyocardial administration. Next, the potential of PLGA microparticles for administration in the heart was assessed in a MI rat model. Particle biodegradation over time and myocardial tissue reaction were studied by routine staining and confocal microscopy. Results showed that microparticles with a diameter of 5 μm were the most compatible with intramyocardial administration in terms of injectability through a 29-gauge needle and tissue response. Particles were present in the heart tissue for up to three months post-implantation and no particle migration towards other solid organs was observed, demonstrating good myocardial retention. CD68 immunolabeling revealed 31%, 47% and below 4% microparticle uptake by macrophages one week, one month and three months after injection, respectively (P<0.001). Taken together, these findings support the feasibility of the developed PLGA microparticles as vehicles for delivering growth factors in the infarcted myocardium

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    The labor market effects of technology shocks

    Get PDF
    We analyze the effects of neutral and investment-specific technology shocks on hours worked and unemployment. We characterize the response of unemployment in terms of job separation and job finding rates. We find that job separation rates mainly account for the impact response of unemployment while job finding rates for movements along its adjustment path. Neutral shocks increase unemployment and explain a substantial portion of unemployment and output volatilityinvestment-specific shocks expand employment and hours worked and mostly contribute to hours worked volatility. We show that this evidence is consistent with the view that neutral technological progress prompts Schumpeterian creative destruction, while investment specific technological progress has standard neoclassical feature

    Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia

    Get PDF
    Myocardial ischemia (MI) remains one of the leading causes of death worldwide. Angiogenic therapy with the vascular endothelial growth factor (VEGF) is a promising strategy to overcome hypoxia and its consequences. However, from the clinical data it is clear that fulfillment of the potential of VEGF warrants a better delivery strategy. On the other hand, the compelling evidences of the role of oxidative stress in diseases like MI encourage the use of antioxidant agents. Coenzyme Q10 (CoQ10) due to its role in the electron transport chain in the mitochondria seems to be a good candidate to manage MI but is associated with poor biopharmaceutical properties seeking better delivery approaches. The female Sprague Dawley rats were induced MI and were followed up with VEGF microparticles intramyocardially and CoQ10 nanoparticles orally or their combination with appropriate controls. Cardiac function was assessed by measuring ejection fraction before and after three months of therapy. Results demonstrate significant improvement in the ejection fraction after three months with both treatment forms individually; however the combination therapy failed to offer any synergism. In conclusion, VEGF microparticles and CoQ10 nanoparticles can be considered as promising strategies for managing MI
    corecore