34 research outputs found

    Cryptimeleon: A Library for Fast Prototyping of Privacy-Preserving Cryptographic Schemes

    Get PDF
    We present a cryptographic Java library called Cryptimeleon designed for prototyping and benchmarking privacy-preserving cryptographic schemes. The library is geared towards researchers wanting to implement their schemes (1) as a sanity check for their constructions, and (2) for benchmark numbers in their papers. To ease the implementation process, Cryptimeleon speaks the language of paper writers. It offers a similar degree of abstraction as is commonly used in research papers. For example, bilinear groups can be used as the familiar black-box and Schnorr-style proofs can be described on the level of Camenisch-Stadler notation. It employs several optimizations (such as multi-exponentation) transparently, allowing the developer to phrase computations as written in the paper instead of having to conform to an artificial API for better performance. Cryptimeleon implements (among others) finite fields, elliptic curve groups and pairings, hashing, Schnorr-style zero-knowledge proofs, accumulators, digital signatures, secret sharing, group signatures, attribute-based encryption, and other modern cryptographic constructions. In this paper, we present the library, its capabilities, and explain important design decisions

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    Isoetin 2′-<i>O</i>-α-<span style="font-variant: small-caps">l</span>-arabinopyranoside-5′-<i>O</i>-β-<span style="font-variant: small-caps">d</span>-glucopyranoside

    No full text
    Isoetin derivatives are a rare class of flavonoids with a rather erratic occurrence across the plant kingdom. The Cichorieae tribe of the Asteraceae family has proven to be a rich source and a centre of chemical diversity of this class of compounds. Here, we describe the chromatographic isolation and mainly NMR-based structure elucidation of a previously undescribed isoetin derivative from Leontodon hispidus L. (Asteraceae, Cichorieae). The chemophenetic relevance is discussed briefly

    Method for recycling polyolefin containing waste

    No full text
    The invention refers to a method for recycling polyolefin containing waste by using a solvent with a specific Hansen parameter and contacting this mixture with a liquid filtration aid before separating the polyolefin from the mixture. The method comprises the following steps: ¢ Mixing the polyolefin containing waste with a solvent having a Hansen parameter ́ H from 0.0 to 3.0 MPa 1/2 ; ¢ Contacting this mixture with a liquid filtration aid having a Hansen parameter ́ H > 4.0 MPa 1/2 ; and ¢ Separating the polyolefin from the mixture

    Correlative microscopy using SEM based nano-CT

    No full text
    Besides electron imaging in scanning electron microscopy (SEM), techniques like energy dispersive X-ray spectroscopy (EDX) or electron backscatter diffraction (EBSD) are widely established. With integration of a target holder and a pixelated X-ray detector, X-ray computed tomography (CT) in SEM can be realized and extends the modalities of materials characterization in one instrument. For nano-CT mode, an electron beam is focused on a suitable target leading to X-ray emission. While passing through a specimen, X-rays are differently attenuated depending on their material properties and detected by a direct converting X-ray detector afterward. Presented is a SEM-based nano-CT called XRM-II nanoCT and different applications of correlative microscopy using electron imaging, energy dispersive X-ray spectroscopy and CT. Besides multiscale investigation on materials for fuel cells and electrolysers by 3D visualization with micro- and nano-CT, nano-CT characterization of a catalytic converter with additional chemical analysis is depicted. At last, time-resolved imaging of morphology changes in an annealed Al alloy using nano-CT is presented. Results show grain coarsening as well as precipitations in the range of 200 – 1200 nm

    Prediction of Cognitive Decline in Temporal Lobe Epilepsy and Mild Cognitive Impairment by EEG, MRI, and Neuropsychology

    No full text
    Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy, memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively assessed patients with temporal lobe epilepsy (N = 9), mild cognitive impairment (N = 19), and subjective cognitive complaints (N = 4) and healthy controls (N = 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. The best sensitivity/specificity for decline was 72%/82% for executive functions based on a feature combination from MRI volumetry and EEG partial coherence during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology; 84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a more general model of cognitive performance decline
    corecore