82 research outputs found

    Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

    Get PDF
    Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientIfico e Tecnologico (CNPq)Coordenacao para Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Fundo de Defesa da Citricultura (FUNDECITRUS

    Search for three-jet resonances in pp Collisions at √s=7  TeV

    Get PDF
    This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.Results are reported from a search for the production of three-jet resonances in pp collisions at a center-of-mass energy √s=7  TeV. The study uses the data sample collected by the CMS experiment at the LHC in 2011, corresponding to an integrated luminosity of 5.0fb -1. Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed for the presence of resonances in the three-jet invariant mass spectrum. No evidence for a narrow resonance is found in the data, and limits are set on the cross section for gluino pair production in an R-parity-violating supersymmetry model, for gluino masses greater than 280 GeV. Assuming a branching fraction for gluino decay into three jets of 100%, gluino masses below 460 GeV are excluded at 95% confidence level. These results significantly extend the range of previous limits. © 2012 CERN.European Commission; Federal Ministry of Science, Research and Economy (Austria); ); Agency for Innovation by Science and Technology (Belgium); Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; Fundação de Amparo à Pesquisa do Estado de São Paulo; Ministry of Science and Technology of the People's Republic of China; National Natural Science Foundation of China; Colciencias (Colombia); Ministry of Science, Education and Sports of the Republic of Croatia; Research Promotion Foundation (Cyprus); Centre National de la Recherche Scientifique (France); Bundesministerium für Bildung und Forschung (Deutschland); Deutsche Forschungsgemeinschaft; General Secretariat of Research and Technology (Greece); Helsinki Institute of Physics; National Office for Research and Technology (Hungary); Institute for Research in Fundamental Sciences (Iran); Science Foundation Ireland; Istituto Nazionale di Fisica Nucleare (Italia); Compagnia di San Paolo (Italia); National Research Foundation of Korea; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (México); Consejo Nacional de Ciencia y Tecnología (México); Secretaría de Educación Pública (México); Universidad Autónoma de San Luis Potosí; Ministry of Science and Innovation (New Zealand); Pakistan Atomic Energy Commission; National Science Center (Poland); Fundação para a Ciência e a Tecnologia (Portugal); Joint Institute for Nuclear Research (Russia); Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development (Serbia); Ministerio de Ciencia e Innovación (España); Swiss National Science Foundation.Peer Reviewe

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe
    corecore