694 research outputs found

    Analysis of 13 C and 14 C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with 13 C- and 14 C-labeled pyruvate

    Get PDF
    Measurements of hyperpolarized 13C label exchange between injected [1‐13C]pyruvate and the endogenous tumor lactate pool can give an apparent first‐order rate constant for the exchange. The determination of the isotope flux, however, requires an estimate of the labeled pyruvate concentration in the tumor. This was achieved here by measurement of the tumor uptake of [1‐14C]pyruvate, which showed that <2% of the injected pyruvate reached the tumor site. Multiplication of this estimated labeled pyruvate concentration in the tumor with the apparent first‐order rate constant for hyperpolarized 13C label exchange gave an isotope flux that showed good agreement with a flux determined directly by the injection of non‐polarized [3‐13C]pyruvate, rapid excision of the tumor after 30 s and measurement of 13C‐labeled lactate concentrations in tumor extracts. The distribution of labeled lactate between intra‐ and extracellular compartments and the blood pool was investigated by imaging, by measurement of the labeled lactate concentration in blood and tumor, and by examination of the effects of a gadolinium contrast agent and a lactate transport inhibitor on the intensity of the hyperpolarized [1‐13C]lactate signal. These measurements showed that there was significant export of labeled lactate from the tumor, but that labeled lactate in the blood pool produced by the injection of hyperpolarized [1‐13C]pyruvate showed only relatively low levels of polarization. This study shows that measurements of hyperpolarized 13C label exchange between pyruvate and lactate in a murine tumor model can provide an estimate of the true isotope flux if the concentration of labeled pyruvate that reaches the tumor can be determined

    The Effect of Topical Fluoride on Dental Caries Experience in Adult Females of a Military Population

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66668/2/10.1177_00220345550340011801.pd

    Relaxation kinetics in two-dimensional structures

    Full text link
    We have studied the approach to equilibrium of islands and pores in two dimensions. The two-regime scenario observed when islands evolve according to a set of particular rules, namely relaxation by steps at low temperature and smooth at high temperature, is generalized to a wide class of kinetic models and the two kinds of structures. Scaling laws for equilibration times are analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl

    Canonical quantization of so-called non-Lagrangian systems

    Full text link
    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories (Gitman, Tyutin, 1990) to the case under consideration. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge.Comment: 13 page

    Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth

    Get PDF
    Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a hundred active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00 to 16:00 local time) and two-hour averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-minute smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in-situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain

    Video-based Simulations: Considerations for Teaching Students with Developmental Disabilities

    Get PDF
    The use of video-based multimedia simulations for teaching functional skills to persons with developmental disabilities remains an unexplored application of technology for this group. This article examines the historical literature in this area, and discusses future considerations, design issues, and implications of using multimedia simulations. Implementation issues are presented, and suggestions regarding design, development, and application of multimedia simulations are offered. Considerations address the importance of appropriate role modeling and the combination of video-based simulation and in vivo training to foster generalization and maintenance in the context of transition to the real world.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    • …
    corecore