1,251 research outputs found

    Exponential speed-up with a single bit of quantum information: Testing the quantum butterfly effect

    Full text link
    We present an efficient quantum algorithm to measure the average fidelity decay of a quantum map under perturbation using a single bit of quantum information. Our algorithm scales only as the complexity of the map under investigation, so for those maps admitting an efficient gate decomposition, it provides an exponential speed up over known classical procedures. Fidelity decay is important in the study of complex dynamical systems, where it is conjectured to be a signature of quantum chaos. Our result also illustrates the role of chaos in the process of decoherence.Comment: 4 pages, 2 eps figure

    Bell's Theorem from Moore's Theorem

    Full text link
    It is shown that the restrictions of what can be inferred from classically-recorded observational outcomes that are imposed by the no-cloning theorem, the Kochen-Specker theorem and Bell's theorem also follow from restrictions on inferences from observations formulated within classical automata theory. Similarities between the assumptions underlying classical automata theory and those underlying universally-unitary quantum theory are discussed.Comment: 12 pages; to appear in Int. J. General System

    Growth and characterization of A_{1-x}K_xFe_2As_2 (A = Ba, Sr) single crystals with x=0 - 0.4

    Full text link
    Single crystals of A1x_{1-x}Kx_xFe2_2As2_2 (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe2_2As2_2 system, the SDW transition is smeared, and superconducting samples with the compound of Ba1x_{1-x}Kx_xFe2_2As2_2 (0 <x< x \leqslant 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.Comment: 9 pages, 6 figures, 1 table. This paper together with new data are modified into a new pape

    Rank-based model selection for multiple ions quantum tomography

    Get PDF
    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the "sparsity" properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods -- the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) -- to models consising of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of 4 ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a 4 ions experiment aimed at creating a Smolin state of rank 4. The two methods indicate that the optimal model for describing the data lies between ranks 6 and 9, and the Pearson χ2\chi^{2} test is applied to validate this conclusion. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.Comment: 24 pages, 6 figures, 3 table

    Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the Everglades

    Get PDF
    In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TPμM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades

    Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4

    Get PDF
    β1- and β2-adrenergic receptors (βARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by β1AR but not β2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that β1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a β2AR/β-arrestin/PDE complex reported previously. The β1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the β2AR is a prerequisite for the recruitment of a complex consisting of β-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of β1- and β2-adrenoceptor signaling

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore