
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 176.249.218.53

This content was downloaded on 14/03/2014 at 12:58

Please note that terms and conditions apply.

Rank-based model selection for multiple ions quantum tomography

View the table of contents for this issue, or go to the journal homepage for more

2012 New J. Phys. 14 105002

(http://iopscience.iop.org/1367-2630/14/10/105002)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/20023579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/14/10
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Rank-based model selection for multiple ions
quantum tomography
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Abstract. The statistical analysis of measurement data has become a key
component of many quantum engineering experiments. As standard full state
tomography becomes unfeasible for large dimensional quantum systems,
one needs to exploit prior information and the ‘sparsity’ properties of the
experimental state in order to reduce the dimensionality of the estimation
problem. In this paper we propose model selection as a general principle for
finding the simplest, or most parsimonious explanation of the data, by fitting
different models and choosing the estimator with the best trade-off between
likelihood fit and model complexity. We apply two well established model
selection methods—the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC)—two models consisting of states of fixed rank and
datasets such as are currently produced in multiple ions experiments. We test the
performance of AIC and BIC on randomly chosen low rank states of four ions,
and study the dependence of the selected rank with the number of measurement
repetitions for one ion states. We then apply the methods to real data from a
four ions experiment aimed at creating a Smolin state of rank 4. By applying the
two methods together with the Pearson χ 2 test we conclude that the data can be
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suitably described with a model whose rank is between 7 and 9. Additionally we
find that the mean square error of the maximum likelihood estimator for pure
states is close to that of the optimal over all possible measurements.
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1. Introduction

Recent years have witnessed significant progress in the engineering and control of quantum
systems [1–3]. From the preparation of exotic quantum states [4–7] to the implementation
of accurate quantum protocols [8–11] experimentalists are confronted with the problem
of reconstructing such mathematical objects statistically, from the outcomes of repeated
measurements. The theoretical and experimental challenges have stimulated the development
of a large array of new methods at the boundary between quantum theory and statistics: state
estimation (or tomography) [12–17], tomography for incomplete data [18–20], permutationally
invariant tomography [21, 22], design of experiments [23–25], quantum process and detector
tomography [26, 27] construction of confidence regions (error bars) [28, 29], quantum
tests [30–32], entanglement estimation [33], quantum homodyne tomography [34–36], asymp-
totic theory [37–39]; see also the monographs [40, 41] and the collections of papers [42, 43].

The importance and difficulty of quantum state tomography became evident in the
landmark experiment [7] where entangled states of up to eight ions were created and fully
characterized. More recently the same group succeeded in creating entangled states of 14
ions [44] but their statistical reconstruction is beyond current computational capabilities!
Therefore, there is great interest in alternative methods aimed at reducing the dimensionality
of the state estimation problem without making unwarranted or unrealistic assumptions.
Among these we mention the development of quantum compressed sensing methods [45, 46]
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which extend the ‘classical’ `1-minimization algorithms [47, 48] to the quantum set-up, and
the estimation of many-body states based on lower dimensional families of matrix product
states [49]. Both methods rely on the ansatz that the states produced in real experiments are not
completely arbitrary, but have some sparsity structure that can be exploited for more efficient
estimation, e.g. low rank in the first case and finite correlations in the second.

In this paper we propose and investigate a state tomography method which can also
take advantage of the sparsity structure of the state, by adjusting the rank of the estimator
(number of non-zero eigenvalues) according to the measurement data. However, although it
shares with compressed sensing the goal of exploiting sparsity structures, our method is closer
to the standard tomography set-up in the sense that it takes as input the dataset consisting of
measurement counts rather than estimates of observables expectations, and it uses maximum
likelihood (ML) for determining the estimator of a given rank. The philosophy of rank-based
model selection is to choose an estimator which offers a good fit to the data, but at the
same time contains a minimal number of parameters (Occam razor principle). For this, we
construct a sequence of models consisting of states of fixed rank, and choose the model whose
maximum likelihood estimator (MLE) achieves the best trade-off between fit (likelihood) and
model complexity. To quantify the trade-off we use two model selection methods, the Akaike
information criterion (AIC) [50] and the Bayesian information criterion (BIC) [51] which have
been used extensively in model selection problems; see [52, 53] for an introduction to model
selection methods, and [54–56] for applications in quantum statistics.

Although the method can be used for an arbitrary measurement set-up, we focus on the
statistical model of multiple ions tomography (MIT) [7, 44], which constitutes a physically
relevant testing ground for tomography of large dimensional systems. We emphasize that model
selection does not assume any particular model, but rather lets the data select the model which
gives the most suitable description.This offers the experimentalist an ‘honest’ but also minimal
estimation framework. Since the states created in many experiments have a good degree of
purity, one only needs to compute the ML over spaces of low rank, rather than full rank matrices.
Furthermore, the principle of model selection can be applied to other families of models such
as matrix product states, which may be more suitable in specific experimental conditions.

The paper is organized as follows. In section 2 we introduce the statistical model of
MIT, and discuss some of the existing estimation methods. To gain more insight, in section 3
we investigate the problem of estimating pure states and in particular we find that the MIT
measurement set-up is quasi-optimal in the sense that the mean norm-two distance squared is
only slightly larger than that of the optimal measurement, asymptotically with the number of
measured copies. Section 4 introduces the two rank-based model selection procedures based
on the AIC and BIC, and discusses the implementation of the fixed rank models by using the
Cholesky decomposition. The methods are applied to three randomly chosen states of ranks
1, 2 and 3 in section 5. We find that both criteria perform very well when the strictly positive
eigenvalues are significant relative to the number of measurement samples, and explain this by
analysing the asymptotics of the log-likelihood ratio statistic for different models. In section 6
we investigate the dependence of the selected rank on purity and number of measurement
repetitions in a one ion study. In section 7 we apply BIC and AIC to experimental data provided
by Rainer Blatt’s group from the University of Innsbruck. We find that the maximum log-
likelihood flattens from rank 10 (see figure 5), and the AIC and BIC predict ranks 9 and
respectively 6, which capture the four significant eigenvalues and some of the eigenvalues of
order 10−2 (see table 3). As an additional check, we use the Pearson χ2 statistic to test the
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hypothesis H0 that state has rank of at most 10, and find that there is no evidence to reject H0.
Section 8 contains a summary of the paper and an outlook for future work.

The focus of our paper is to analyse the behaviour of the model selection methods and the
dependence on the eigenvalues of the states, and the number of measurement repetitions. For
these purposes it suffices to consider states of up to four ions. We leave it for the future work
to explore how much the method can be pushed towards higher number of ions, of relevance to
current experiments.

In several occasions we refer to ‘asymptotics’ as the body of statistical theory dealing with
the behaviour of estimators and other statistics when the number of samples (measurement
repetitions) tends to infinity [58, 66]. The advantage of asymptotic analysis is that it often
offers a clearer view of the problem, revealing the generic, universal features such as the
asymptotic normality of the MLE, the χ2-distribution of certain test statistics, etc. The relevance
of asymptotic results to high dimensional models with constrained parameter spaces such
as encountered in quantum tomography, has been justly debated and needs to be carefully
considered on a case by case basis. In this paper we contribute towards this goal with examples
on both sides sides of the debate.

2. Background on multiple ions tomography (MIT)

In this section we review the statistical model describing the measurement data collected in
MIT experiments [7, 11, 44], and comment briefly on the existing estimation methods, with
an emphasis on maximum likelihood estimation. Throughout the paper ‘hat’ is used to denote
estimators, e.g. ρ̂ is a data dependent estimator of the state ρ.

The physical system consists of an array of trapped ions whose joint state can be
manipulated by means of precisely tuned laser pulses. Since only two electronic energy levels
are used for encoding the state, each ion can be describe mathematically as a two level system,
so that the joint Hilbert space of k ions is C2k

. The state of the system is described by a density
matrix ρ on this space, i.e. a 2k

× 2k complex selfadjoint matrix which is positive semidefinite
and has trace one. Typically, the goal of the experiment is demonstrate the preparation of a
certain target state to a sufficiently high degree of precision. To validate the result, a large
number of preparation-measurement cycles are performed, and the collected measurement data
are used to estimate the state produced in the preparation phase.

In a nutshell, the measurement procedure consists of performing simultaneous Pauli
measurements on all ions, each combination of Pauli observables being repeatedly measured
n times. More precisely, each measurement is defined by a setting d which specifies which of
the three Pauli observables σx , σy, σz is measured for each ion. For instance d := (x, y, z, z) is
a four ions measurement setting, and in general for a k-ions state there are 3k possible settings
d ∈ Dk := {x, y, z}k . For each fixed setting, the measurement produces random outcomes
s ∈Ok := {+1,−1}

k with probability distribution

Pρ(s|d) := Tr(ρPd
s )= 〈ed

s |ρ|ed
s 〉, (1)

where Pd
s are one dimensional projections onto the vectors of the orthonormal basis

|ed
s 〉 := |ed1

s1
〉 ⊗ · · ·⊗ |edk

sk
〉, s ∈Ok := {+1,−1}

k, (2)

formed by taking tensor products of eigenvectors of the Pauli matrices σd1, . . . , σdk :

σd |e
d
s 〉 = s |ed

s 〉, d ∈ {x, y, z}, s ∈ {+1,−1}.
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After repeating n times the measurement with setting d, the data can be summarized by counting
the number of times that each possible outcome has occurred. The probability of a certain set of
counts {N (s|d) : s ∈Ok} is given by the multinomial distribution with probabilities given by (1),
so that

Pρ({N (s|d) : s ∈Ok})=
n!∏

s N (s|d)!

∏
s

Pρ(s|d)N (s|d), d ∈ Dk. (3)

Since any given setting d gives information only about the diagonal of the density matrix ρ
with respect to the basis (2), the above procedure is repeated for all possible settings to obtain
the complete 2k

· 3k dataset consisting of counts {N (s|d) : (s,d) ∈Ok ×Dk} for all outcomes in
each setting. As successive preparation-measurement cycles are independent of each other, the
distribution over all possible datasets is the product of multinomials,

Pρ({N (s|d) : (s,d) ∈Ok ×Dk})=

∏
d

Pρ({N (s|d) : s ∈Ok}). (4)

Let us ponder for a moment on the structure of this statistical model. If no assumption is
made on the state, the parameter space is the (4k

− 1)-dimensional convex set of density
matrices Sk ⊂ M(C2k

). We will verify that the above measurement scheme is informationally
complete, or equivalently that the parameter ρ is identifiable in the sense that there is a
one-to-one correspondence between ρ and the probability distribution Pρ given in (4). Since
{σx , σy, σz, σ0 := 1} form a basis in the space of 2 × 2 selfadjoint matrices, the tensor products

σ̃i :=
1

2k/2
σi1 ⊗ . . .⊗ σik , i := (i1, . . . , ik) ∈ {x, y, z, 0}

k

form an orthonormal basis of the space of 2k
× 2k selfadjoint matrices with respect to the inner

product 〈A, B〉 := Tr(AB). Therefore, any state can be expanded as

ρ =

∑
i

ρiσ̃i :=
∑

i

〈σ̃i, ρ〉σ̃i, (5)

and to estimate ρ it suffices to estimate the Fourier coefficients ρi. A naive unbiased estimator
can be easily constructed based on the counts of any particular measurement setting d for which
d j = i j whenever i j 6= 0. For example when k = 2, to estimate ρ(x,z) we consider the counts from
the setting d = (x, z), and define

ρ̂(x,z) :=
1

√
22n

[N ((+1,+1)|d)+ N ((−1,−1)|d)− N ((+1,−1)|d)− N ((−1,+1)|d)] .

While this proves that the state can be fully estimated, the naive estimator is generally not a
bona-fide density matrix, and more importantly, has large estimation errors. The latter is due
to the fact that ρ̂i is constructed from the counts of a single setting and does not harness the
information contained in the counts of the others. Indeed, since the projectors {Pd

s : s ∈Ok,

d ∈ Dk} form a (highly) overcomplete set of vectors in M(C2k
), any product of Pauli’s σi can be

expressed in (continuously) many ways as a linear combination of projectors, each producing
a linear estimator which could in principle be combined to obtain a significantly reduced mean
square error (MSE). However, finding the ‘optimal linear estimator’ is problematic due to the
fact that the empirical frequencies N d

s /n are noisy estimates of the probabilities P(s|d), and
their covariance depends on the unknown state. An interesting proposal in this direction is the
Kalman filter estimator developed in [14], but to our knowledge its performance in the case of
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MIT has not been extensively investigated. Another proposal put forward in [57] is to combine
the naive estimator with a second stage rank-penalized minimization of the norm-two square
(Hilbert–Schmidt) distance to the final estimator.

ML is one of the most commonly used estimation methods across statistics. Its popularity
is due to the intuitive interpretation, versatility, and strong theoretical underpinning. Under
certain regularity conditions the MLE is asymptotically optimal (or efficient in statistical
terminology) in the sense that its covariance achieves the Cramér–Rao bound in the limit of
large samples [58], and has normal (Gaussian) limiting distribution, with covariance equal to
the inverse of the Fisher information matrix. By discarding the constant factorial term in (3) and
taking logarithm we can write the MLE for MIT as

ρ̂ := arg max
τ∈Sk

∑
s,d

N (s|d) logPτ (s|d), (6)

where the maximum is computed over the set Sk of k-ions states τ . Note that the MLE is
invariant under reparametrization, i.e. the ML estimator of a state functional f := f (ρ) is
f (ρ̂). The MLE has been used extensively in quantum statistics [59], and an efficient iterative
computational routine has been put forward in [60, 61]. Nevertheless, ML has been criticized
for several perceived drawbacks [12, 13]. The first criticism is that the ML has the tendency to
produce rank deficient estimators, i.e. which have some zero eigenvalues, when the true state
has some small eigenvalues; this can be understood [12] by observing that the likelihood (seen
as a function of the matrix elements) may attain its maximum at a point which lies outside the
convex space of states Sk , in which case the ‘constrained’ MLE ρ̂ will fall on boundary of Sk

by the concavity of the log-likelihood function. The second, and in our opinion more serious
criticism is that the standard asymptotic theory does not apply as such to states which lie on
the boundary, more precisely the estimated parameters are not normally distributed around the
truth for large sample sizes. Note however that asymptotic normality does hold when restricting
to pure states models as we will show in the next section, and also holds for the unconstrained
MLE, for ‘generic’ states which satisfy Pρ(s|d) > 0 for all s,d. This may be used to prove the
existence of the asymptotic distribution of the MLE (6), but the latter is likely to be complicated
and impractical for establishing confidence regions (error bars). In this paper we focus on the
performance of the proposed model selection estimation method, and refer to [28, 29] for two
recent proposals for constructing confidence regions, and the forthcoming paper [62] for a
comparative study of bootstrap and Fisher information methods.

3. Estimation of pure states in the MIT setting

Pure states are arguably the golden standard of most state preparation experiments [7, 44].
Therefore, we will start by considering the ideal situation in which the quantum state is assumed
to be pure, and we would like to estimate it using the MIT dataset described in section 2. The
goal is to get more insight into the statistical power of the measurement set-up and its asymptotic
properties. This will prepare the ground for the next section where the purity assumption is
lifted and the state is fitted to models of increasing rank, and model selection criteria are used
for choosing a rank with a good trade-off between fit and model complexity. The findings are
summarized at the end of the section, where we also clarify the relation to the compressed
sensing set-up [45, 46] which uses as input the estimated values ρ̂i of the expectations of
Pauli observables σi.
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The pure states MLE ρ̂ can be computed as in (6), with the maximization restricted to the
space of pure (rank one) states on C2k

. As figure of merit we consider the MSE

MSE(ρ̂) := E(‖ρ− ρ̂‖
2
2)

with the norm-two distance squared defined as

‖ρ− ρ̂‖
2
2 :=

2k∑
i, j=1

|ρi, j − ρ̂i, j |
2
=

∑
i

|ρi − ρ̂i|
2, (7)

where ρi are the Fourier coefficients with respect to the Pauli basis defined in (5). Note that
for pure states the norm-two distance is related in a simple way to the (arguably more natural)
norm-one distance ‖ρ− ρ̂‖1 := Tr(|ρ− ρ̂|) by the equality ‖ρ− ρ̂‖2 = ‖ρ− ρ̂‖1/

√
2.

We would like to address the following questions:

1. What is the MSE of the MLE?

2. Are we in an ‘asymptotic regime’?

3. Is the multiple ions measurement ‘optimal’ in any sense?

The pure states form a compact manifold of dimension 2(2k
− 1) which can be identified

with the complex projective spaceCP2k+1. Therefore, when restricting the MIT statistical model
to pure states, the standard asymptotic efficiency theory [58] is applicable. For simplicity, we
assume that |ψ〉 has the expansion with respect to the standard basis |ψ〉 =

∑
ci |ei〉 such that

c1 6= 0, in which case we can parametrize the state by the real and the imaginary parts of the
remaining coefficients

θ → |ψθ〉 =

√
1 − ‖θ‖2|e1〉 +

2k∑
j=2

(θ j + i θ2k−2+ j)|e j〉, θ ∈ R2(2k
−1), ‖θ‖< 1.

Note that due to the geometry of the projective space, any global parametrization must be
singular unless some points are cut out as we did here. However, as we are interested in the
asymptotic behaviour of the MLE, the global properties are unimportant and we can always
choose an appropriate local parametrization for all practical purposes. The norm two-square
distance (7) can be rewritten locally as a quadratic form [63]

‖ρθ − ρθ̂‖
2
2 = (θ̂ − θ)G(θ)(θ̂ − θ)t + o(‖θ̂ − θ‖2), (8)

where G(θ) is a positive definite matrix whose explicit form can be easily computed,
and superscript ‘t’ denotes the transpose. The MLE θ̂ = θ̂n is efficient, i.e. as n → ∞ its
renormalized error converges in distribution (or law) to a normal

√
n(θ̂ − θ)

L
−→ N (0, I (θ)−1), (9)

where N (0, I (θ)−1)) is the centred normal distribution with covariance matrix I (θ)−1 which is
the inverse of the (classical) Fisher information matrix I (θ). In particular, from (8) and (9) we
get

lim
n→∞
E(‖ρθ − ρθ̂‖

2
2)= Tr(G(θ)I −1(θ)). (10)

To verify these results we simulated 100 datasets from a fixed but randomly chosen pure
state of k = 4 ions, each dataset consisting of counts for n = 100 measurements per setting.
Figure 1 shows the histogram of the square error ‖ρθ − ρθ̂‖

2
2 whose empirically estimated MSE
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Figure 1. Histogram of the norm-two error ‖ρ− ρ̂‖
2
2 of the MLE ρ̂ for 100

samples from a fixed pure state ρ. The mean square error (green line) is very
close to the classical Cramér–Rao bound (blue line) as predicted by asymptotic
theory, and the latter is only slightly larger than the ‘quantum optimal bound’
(red line), showing that for pure states the ions measurement is almost almost
optimal among all measurements.

(green line) is very close to the asymptotic prediction (blue line) computed from (10) which is
equal to 3.9 × 10−3. More interestingly, we find that the MSE is also very close to the ‘quantum
optimal bound’ (red line) which describes the best MSE achievable with any measurement! The
latter can be obtained by using the machinery of quantum Cramér–Rao theory and is given by
the simple formula (see [64] and references therein)

QMSE =
]parameters

]samples
=

2(2k
− 1)

3kn
=

2(24
− 1)

34 × 100
= 3.7×10−3. (11)

This example shows that the MSE of the MLE agrees with the asymptotic theory when
n = 100 and k = 4; we expect that the same holds for fixed n and larger k due to the favourable
scaling of the number of samples n · 3k with respect to the number of parameters 2(2k

− 1).
Moreover, the multiple ions measurement set-up appears to be quasi-optimal. This implies
that adaptive strategies (where the measurement settings are chosen in a way that depends on
previous measurement outcomes) cannot offer a significant improvement, but does not exclude
the possibility that a similar performance can be achieved with a fraction of the settings. To
further emphasize the point that the MIT dataset is very informative, and that ML can optimally
extract this information from the data, we compare the above results with the MSE of the
naive estimator discussed in section 2, and with the asymptotic MSE of a dataset consisting of
estimates of the Pauli products obtained by lumping together the counts of each measurement
setting into a single statistic.
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3.1. Mean square error (MSE) of the naive estimator

With the square error defined as in (7), we note that the MSE of each coefficient ρ̂i for which
i1, . . . , ik 6= 0, is of the order 1/(n · 2k) since we are essentially dealing with the problem
of estimating the mean of a random variable with values {+2−k/2,−2−k/2

}. Therefore these
coefficients alone (not counting those for which some i j are zero) bring a contribution of
the order 3k/(n · 2k) which is larger than QMSE (11) by a factor (9/4)k/2. For the particular
example of k = 4 and n = 100 this gives an MSE of 5 × 10−2 which is an order of magnitude
larger than that of the MLE.

3.2. MSE of the coarse grained data

At this point, it is natural to ask the following question. Suppose that we are given the 3k

empirical averages of the Pauli products σi

ρ̂i ≈ Tr(ρσ̃i)= 〈ψ |σ̃i|ψ〉, i1, . . . , ik 6= 0 (12)

which are obtained by computing one empirical average for each column of the original dataset.
Is there a more efficient method to estimate the pure state |ψ〉, from the data (12) and what is
its MSE? Two important candidates are the compressed sensing and lasso algorithms [46] (with
the slight difference that they would use a smaller number of settings, but proportionally more
measurements per setting). Both methods aims at estimating the state by trying to match the
empirical expectations ρ̂i with those of a selfadjoint matrix, while at the same time penalizing
the trace norm of the matrix. Testing these methods is beyond the scope of this paper, but the
asymptotic efficiency theory offers a shortcut to the answer of the above question. Applying
the same methodology as before, but to the coarse grained data (12) we can predict that
(asymptotically) the MSE of any estimator is bounded from below by that of the MLE ρ̂cg

which in turn satisfies

lim
n→∞

nE
(
‖ρ̂cg − ρ‖

2
2

)
= Tr(G(θ)Icg(θ)

−1), (13)

where the only difference with (11) is the Fisher information matrix which satisfies the
inequality Icg(θ)6 I (θ). Figure 2 shows histograms of the asymptotic MSE (11) for the full
MIT data (left panel) versus the MSE (13) of the coarse grained data (right panel). The
histograms were produced with 250 randomly chosen pure states, k = 4 and n = 100. Note
that the MSE of the coarse grained data is smaller than the (partial) estimated contribution of
the naive estimator. However, the MSE is still an order of magnitude higher that that of the full
dataset, due to the fact that a significant amount of information has been discarded in the process
of retaining the Pauli products expectations.

To summarize, we conclude that MIT works because the different settings ‘overlap’ with
each other in the sense that the one dimensional projections |es

d〉〈e
s
d| form an overcomplete

set of size 2k
× 3k which is significantly larger than the dimension of the space of matrices

4k even for small k. Therefore, the measurement data is structured so that the counts for each
setting provide a relatively small amount of information, but the dataset as a whole is very
informative about the state. Reducing this dataset to a small number of expectations may be
advantageous for the purpose of devising fast estimation algorithms, but underperforms from
the viewpoint of statistical errors, for a given number of state re-preparations. This statement
may seem to contradict the simulation results illustrated in figure 1 of [46], where compressed
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Figure 2. Histograms of asymptotic MSE’s for 250 randomly chosen pure states,
with k = 4 and n = 100. Left panel: full counts dataset. Right panel: coarse
grained dataset. Keeping only the empirical means of the Pauli products leads
to a 10-fold increase in the MSE.

sensing and lasso are found to perform better than ML on datasets of the type (12). This apparent
contradiction is lifted by the following observations:

(1) Our comparison is between the MSE of efficient estimators for two different types of
data. Based on this we conclude that any estimator using the coarse grained data will
asymptotically underperform ML based on the full counts experimental dataset.

(2) The comparison in [46] is different; it regards the performance of ML versus compressed
sensing and lasso for the coarse grained data. Since a completely unknown state is not
identifiable for the coarse grained model, the MLE is not consistent, and arguably should
not be used in this case.

4. Model selection for quantum tomography

In the previous sections we discussed the extreme scenarios of ‘full’ quantum tomography and
estimation of pure states. In reality, the states produced in experiments tend to have one or few
significant eigenvalues and a large number of small eigenvalues of different orders of magnitude,
which account for the imperfections in the preparation procedure. Therefore, neither of the two
settings seem to be suitable: the former underfits the real state while the latter overfits by trying
to estimate eigenvalues that may not be statistically significant.

This is a well known phenomenon in statistics, that occurs in high (or infinite) dimensional
problems such as estimating the probability density of a real valued random variable, or in
nonlinear regression where an unknown function is ‘learned’ from estimates of its values at
certain points. In such cases the MLE overfits the data and is very ‘noisy’. A possible solution
is to use a MLE, which maximizes the difference between the log-likelihood and a penalty
measuring the complexity of the estimator, e.g. the number of non-zero coefficients with respect
to an appropriate basis. More generally, one can design a class of statistical models with various
degrees of complexity, and decide which model and which estimator from that model is most
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suitable for describing the data. Our aim is to apply the model selection methodology to state
tomography, the models being the families of states of a given rank. The same methods can be
used in tasks such as quantum homodyne tomography [34] where the state to be estimated is
that of a light pulse (one mode continuous variables system), and a model could be the set of
states with a given maximum number of photons [65].

To select the rank of the state we will use two well established methods: the AIC [50]
and the BIC [51]. Both methods amount to penalizing the log-likelihood function by a factor
proportional to the dimension of the model, and choosing the MLE with the smallest value of
the information criterion. In the next section we give a brief general description of AIC and
BIC, after which we discuss the parametrization of the fixed rank quantum models, and the
implementation of the model selection procedure.

4.1. Akaike information criterion (AIC) versus Bayesian information criterion (BIC)
model selection

Occam’s razor is an old scientific principle which states that when trying to explain a
phenomenon, one should choose the simplest model that adequately fits the data. A very
complex model will be able to fit the given data almost perfectly but it will not be able to
generalize very well. On the other hand, very simple models will not be able to describe the
essential features of the data. Therefore, we must make a compromise and choose a model
which is as simple as possible, but no simpler. It is not surprising that many approaches have
been proposed over the years for dealing with this key aspect in statistical modelling.

The general framework of model selection is the following. We are given n samples
X = {X1, . . . , Xn} from some unknown distribution P which we try to fit with a distribution
from one of several possible statistical models

Mr := {Pθr : θr ∈2r ⊂ Rp(r)
}, r = 1, . . . , D,

whereMr has a parameter θr of dimension p(r). For simplicity we assume that X i ∈ {1, . . . , a}

are discrete random variables, as in the case of MIT measurements. We also assume that at least
one of the D models contains the true distribution, or at least gives a reasonable approximation
to it. We denote by θ̂r the MLE for the model Mr , and by `θr = `θr (X) :=

∑n
i=1 logPθr (X i)

log-likelihood function at θr .

4.1.1. Akaike information criterion. The AIC for modelMr is [50]

AIC(r)= −2`θ̂r
+ 2p(r),

and the chosen model is the one with the minimum AIC. Since p(r) is larger for more complex
models, the AIC formally biases against overly complicated models. Although the derivation of
AIC is outside the scope of this paper, we briefly explain the idea behind the choice of penalty.
Having computed the MLEs for different models we would like to select the ‘best’ one in the
sense that the corresponding distribution Pθ̂r

is the closest to the ‘truth’ P with respect to the
Kullback–Leibler distance (or relative entropy)

K (P|Pθ̂r
) :=

a∑
i=1

P(i) log(P(i))−
a∑

i=1

P(i) log(Pθ̂r
(i)).

However, this quantity cannot be computed since P is unknown. Since the first terms on the right
side is the same for all models, it can be neglected, and one can focus on estimating the second
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term, which nevertheless still depends on P. If instead of θ̂r we had a fixed parameter θr , this
term would be the expected value of the log-likelihood at θr and could be estimated by `θr (X)/n,
by the law of large numbers. However `θ̂r

(X)/n is a biased estimator of the second term, due

to the fact that the data has been already used in computing θ̂r . Akaike showed that under the
regularity conditions required by the asymptotic normality theory, the bias is approximately
p(r)/n, so that ML which is the closest to the truth is approximately given by the minimizer of
the AIC.

4.1.2. Bayesian information criterion. The BIC for modelMr is defined as [51]

BIC(r)= −2`θ̂r
+ p(r) log (n),

where n is the sample size. Note that the BIC differs from the AIC only in the second term which
increases with n, so that BIC favours simpler models (that is models with a smaller number of
parameters) compared to AIC. But despite the superficial similarity between the AIC and BIC
the latter is derived in a very different way, within a Bayesian framework.

For simplicity, suppose that there are two competing models,M1 andM2 with parameters
θ1 and θ2 respectively. One begins by assigning prior probabilities q1 and q2 = 1 − q1 to the
event that the observed data have been generated from either model. One also assigns prior
distributions π1(θ1) and π2(θ2) to the model parameters in each model. Then one can compute
the marginal likelihoods which can be interpreted as the probability of observing the data if
modelMi is correct, having integrated out our ignorance about the parameters θ1 and θ2 in each
model. Hence, one can apply Bayes theorem to evaluate the probability of modelMi being the
true model given the observed data. A measure of the extent to which the data support model
M2 overM1 is given by the posterior odds

P(M2|X)
P(M1|X)

=
P(X|M2)

P(X|M1)

q2

q1
.

The first fraction on the right-hand side is called the Bayes factor and the second is known
as the prior odds. The Bayes factor is a fundamental quantity in Bayesian theory and can be
interpreted as a measure of the extent to which the data support modelM2 overM1 when the
prior odds are equal to one. The difference BIC(1)− BIC(2) can be shown to be a large sample
approximation to the logarithm of the Bayes factor, so that the second model is chosen if
the difference is positive.

4.2. Parametrizing models with fixed rank

Here we describe the fixed rank models which will be used in model selection. Let D(d, r) be
the set of rank r states of a d-dimensional quantum system, i.e. those states which have exactly
r non-zero eigenvalues, and let

R(d, r) :=
r⋃

i=1

D(d, r)

be the set of states of rank at most r . Every state ρ has a unique spectral decomposition

ρ =

r∑
i=1

λi Pi ,
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where λi > 0 are its distinct eigenvalues, and Pi is an eigenprojector whose dimension is
equal to the multiplicity mi of λi . The spectral information (λ1, P1, . . . , λr , Pr) can be used to
construct a parametrization ofD(d, r) andR(d, r), which has the advantage of a direct physical
interpretation. However, the practical implementation of such a parametrization for computing
the MLE is less straightforward due to the orthogonality constraints for the eigenvectors, and the
singularities appearing on lower dimensional manifolds consisting of states with non-trivial sets
of multiplicities. A variation on this would be to parametrize the state by the set of eigenvalues
and an eigenbasis, in which case the singularity problem is replaced by the non-identifiability
of the different basis vectors corresponding to the same eigenvalue.

We will describe an alternative parametrization which is related to the Cholesky
factorization of the state. Recall that any positive definite matrix A ∈ M(Cd) has a unique
decomposition

A = T ∗T, (14)

where T is an upper triangular matrix with strictly positive diagonal elements. Therefore there
exists a one-to-one correspondence between full-rank states ρ and matrices T as described
above, with the additional constraint

Tr(T ∗T )=

∑
i j

|Ti j |
2
= Tr(ρ)= 1. (15)

We parametrize such a matrix T by the vector of real numbers θ := (R, I, D) ∈ Rd2
−1 with

R := (Re(T12), . . . ,Re(Td−1,d)),

I := (Im(T12), . . . , Im(Td−1,d)),

D := (T22, . . . , Tdd),

(16)

such that R, I are the real and imaginary parts of the off-diagonal elements ordered from the
first to the d − 1 row, and from left to right along each row. By (14) and (15), θ must satisfy the
constraints D > 0 and ‖R‖

2 + ‖ I ‖
2 + ‖D‖

2< 1, and the left-top element of T is equal to

T11 = T11(θ)= (1 − ‖R‖
2 + ‖I‖2 + ‖D‖

2)1/2 > 0.

The Cholesky parametrization of the full rank matrices can be extended, albeit with some
caveats, to the spaces of rank-deficient matrices D(d, r) and R(d, r). The idea is to consider
a decomposition as in (14), but with T belonging to the set T +(d, r) of d × d upper triangular
matrices with the bottom d − r rows equal to zero, and satisfying T11, . . . , Trr > 0; equivalently,
one can consider r × d trapezoidal matrices obtained by removing the zero lines of the triangular
matrices. Since every T ∈ T +(d, r) is of rank r , this guarantees that the corresponding state ρ
has the same property. However, not all states of rank r can be decomposed in this way! Indeed
it is easy to verify that if ρ = T ∗T then the r × r top-left principal minor of ρ must be of rank
k, and therefore such a parametrization excludes states in D(d, r) which do not satisfy this
property. Nevertheless, ‘generic’ matrices of rank r do have principal minors of rank r , in the
sense that those with smaller rank principal minors form a lower dimensional subset of D(d, r).
If we restrict our attention to the subsetD(d, r)+ ⊂ D(d, r)which excludes the ‘deficient’ states,
we find that the Cholesky decomposition exists and is unique, so that

D(d, r)+ := {ρ = T ∗T : T ∈ T +
d,r} ⊂ D(d, r).

What can we say about the complement D(d, r) \D(d, r)+ ? In order to have a Cholesky
decomposition we need to relax the condition T11, . . . , Trr > 0 and consider the set T (d, r) of
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r -lines upper triangular matrices, with non-negative elements on the diagonal. In this case, the
root T not only exists but is in general not unique.

Let 2(d, r)+ be the set of real parameters θ := (R, I, D) of a matrix T = Tθ ∈ T (d, r)+
which are defined similarly to equation (16), and let2(d, r) be the set of parameters associated
to matrices in D(k, r). We define two sequences of quantum statistical models:

Q+(d, r) := {ρθ = T ∗

θ Tθ : θ ∈2(d, r)+}, r = 1, . . . , d, (17)

Q(d, r) := {ρθ = T ∗

θ Tθ : θ ∈2(d, r)}, r = 1, . . . , d, (18)

the first one consisting of rank r matrices with rank r principal minor, the second one describing
(albeit not always uniquely) all matrices of rank up to r . The reason why we mention the
two models is that each has some appealing features and some disadvantages. For Q(d, r) the
advantage is that we deal with a nested set of models

Q(d, 1)⊂Q(d, 2)⊂ · · · ⊂Q(d, d).

The disadvantage is that the Cholesky parametrization is not one-to-one in this case. On the
other hand, Q(r, d)+ offers a one-to-one parametrization of rank r matrices in D(d, r)+, with
the disadvantage that the models are not nested, but instead Q(d, r)+ lies on the boundary of
Q(d, r + 1)+. While these facts are relevant to a theoretical analysis, for practical purposes the
distinction between the two models is less important, and in all our numerical experiments we
used the models Q+(d, r).

4.3. The implementation of AIC and BIC model selection for rank-based models

We return now to the state estimation problem, and describe how AIC and BIC model selection
is applied to the family of rank-based models described above for a system consisting of k ions,
i.e. d = 2k . Let

`θ = `θ ({N (s|d) : s ∈Ok,d ∈ Dk}) :=
∑
s,d

N (s|d) logPρθ (s|d)

be the log-likelihood of the measurement data, ignoring the constant factorial terms. The MLEs
θ̂r and ρ̂r for the model Q(2k, r)+ are

θ̂r := arg max
θ∈2(2k ,r)+

`θ , ρ̂r := ρθ̂r
.

In order to choose between the different models we compute the AIC and the BIC for each rank
and select the model with the smallest value. In our case the two criteria are given by{

AIC(r) := −2`θ̂r
+ 2p(2k, r),

BIC(r) := −2`θ̂r
+ p(2k, r) log(n · 3k),

(19)

with

p(d, r)= 2dr − r 2
− 1, (20)

the dimension of the space of rank r matrices, and n · 3k is the total number of measurements.
In practice each criterion decreases with the rank until it reaches the minimum value after
which it increases, so one only needs to compute the MLE up to the rank where the criterion
begins to increase. For low rank states, this offers the advantage of having to compute the MLE
on models of dimension approximately rd rather than d2

− 1 as standard ML. The disadvantage
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Table 1. AIC and BIC performance for 100 datasets generated by three randomly
chosen states of ranks 1, 2 and 3. The tables shows the number of times AIC and
BIC choose rank 1, 2 or 3 for each state.

AIC rank
True rank 1 2 3 4

1 82 9 9 0
2 0 74 26 0
3 0 1 80 19

BIC rank
True rank 1 2 3 4

1 99 0 1 0
2 7 90 3 0
3 0 5 95 0

is that the likelihood function is not concave as in the full rank model, and may have several
local maxima.

To implement the ML estimation numerically, we used a standard maximization routine
of the statistics package R. Additionally, we developed an array of statistical analysis tools
such as Fisher information, square errors, bootstrap, Pearson χ2 statistic which will be made
available online. Although the computation of the log-likelihood was optimized for faster speed,
the maximization can probably be improved significantly by using more sophisticated routines.

In the next sections we will discuss the results of several investigations on the performance
of BIC and AIC model selection, using simulated and real data.

5. Study 1: randomly chosen low rank states

In a first simulation study we chose three ‘random’ states of ranks 1, 2, and 3 of k = 4 ions,
and generated 100 datasets from each state, each dataset with n = 100 measurement repetitions.
We then computed the MLEs for the ranks between 1 and 4 and used AIC and BIC to select
the optimal rank. The exact procedure used to generate ‘random’ states is not very important,
but it will be relevant that all non-zero eigenvalues of the states are significant. As illustrated in
table 1, BIC selected the correct rank for each state in roughly 90% of the cases while for AIC
the rate is about 80%. Due to the different penalties, the AIC tends to over-estimate the rank
of the state, while BIC has a slight tendency to under-estimate it. While at first sight this may
appear to be a surprisingly good performance, we will show that it agrees very well with the
predictions of asymptotic theory. For illustration, we consider the state of rank r = 2 denoted
ρ, and show that the distributions of BIC(3)− BIC(2) and BIC(1)− BIC(2) concentrate on the
positive axis, so that BIC chooses the correct rank. Since their behaviours are determined by
different mechanisms, we will study each BIC difference separately. A similar analysis can be
performed for AIC.

In the first case,

BIC(3)− BIC(2)= − 2(`θ̂3
− `θ̂2

)+ log(n · 34)(p(4, 3)− p(4, 2))

= − 2(`θ̂3
− `θ̂2

)+ 242.98, (21)

so the problem is to show that the log-likelihood ratio statistic

3 := 2(`θ̂3
− `θ̂2

)

is typically smaller than the penalty 242.98. For ‘regular’ nested models, the asymptotic
distribution of 3 is described by Wilks’ theorem as discussed in the appendix. However, this
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Figure 3. Histogram of BIC differences for the rank 2 state. Left panel BIC(3)−
BIC(2); right panel BIC(1)− BIC(2). The values are in good agreement with the
asymptotic predictions.

is not directly applicable here since the rank 2 model lies on the boundary of the rank 3 one,
due to the positivity constraints. Nevertheless, Wilks’ theorem can be extended to more general
situations where the two hypotheses can be ‘linearized’ locally (see [66, chapter 16]), in which
case the limiting distribution depends on the local geometry of the two models and the Fisher
information at each point. We will not pursue this analysis here but limit ourselves to giving
a stochastic upper bound to the limiting distribution which will be sufficient for our purposes.
The idea is to note that

3 := 2(`θ̂3
− `θ̂2

)6 2(`θ̃3
− `θ̂2

), (22)

where `θ̃r
is the ‘unconstrained’ MLE obtained by maximizing over the space D̃(d, r)⊃ D(d, r)

consisting of matrices ρ of rank r which are not necessarily positive but must respect the
property that Pρ(·|d) is a probability distribution for each d. The unconstrained MLE is easier to
analyse theoretically and can be used to explain why MLE often produces rank deficient states
when the true state has high purity [12]. Now, assuming that we are in the generic situation
where all probabilities for the true rank-two state ρ are non-zero, this means that locally around
ρ the rank two model is a regular submodel of the extended rank 3 model, and we can apply
Wilks’ theorem to conclude that

2(`θ̃3
− `θ̂2

)
L

−→ χ2(p(4, 3)− p(4, 2)).

From (22) we get that 3 is stochastically bounded from above by χ2(27) and similarly
BIC(3)− BIC(2) is bounded from below by 242.98 −χ2(27)which agrees with the simulations
results illustrated in the left panel of figure 3. Note that as n increases, the probability of BIC
choosing the rank 3 model converges to zero due to the presence of the logn factor in the
penalty, while AIC is not rank consistent in the sense that it choses the higher rank with a
probability which does not vanish with n, in agreement with the results illustrated in table 1.
Let us consider now the second difference BIC(1)− BIC(2), and note that its values are much
larger, as illustrated in the right panel of figure 3. It turns out that in this case the behaviour is
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Table 2. Performance of BIC and AIC model selection for three states: pure
(state 1), almost pure (state 2), and mixed (state 3). For each choice of number
of repetitions, we record the number of times the BIC and AIC select the correct
rank out of a total of 1000 simulations.

Measurement repetitions
10 50 100 250 500

State 1
BIC 987 990 994 992 996

AIC 945 944 919 927 930

State 2
BIC 25 83 183 394 706

AIC 77 312 502 802 942

State 3
BIC 384 973 998 997 988

AIC 594 992 998 997 988

not dominated by the complexity penalty but by the bias of the lower rank model with respect
to the ‘correct’ one, and in particular the distribution of the difference is state dependent. The
key is to observe that while the rank 2 MLE ρ̂2 converges to the true state ρ, the rank one
MLE ρ̂1 converges to the state ρ∗

1 whose corresponding distribution Pρ∗

1
is the closest to the true

distribution Pρ with respect to the relative entropy (or Kullback–Leibler divergence)

ρ∗

1 := arg min
τ∈D(24,1)

K (Pρ| Pτ ).

In conjunction with the law of large numbers we then obtain the almost sure convergence

3

2n
=

1

n

(
`θ̂2

− `θ̂1

)
−→ K

(
Pρ

∣∣ Pρ∗

1

)
as n → ∞.

For our particular example we used one of the rank one MLEs to compute an approximate value
K (Pτ | Pρ)≈ 11.33 which gives an estimate

BIC(1)− BIC(2)= − 2(`θ̂1
− `θ̂2

)+ log(n · 34)(p(4, 1)− p(4, 2))

≈ 2 × 11.33 × 100 + log(100 × 34)(p(4, 1)− p(4, 2))

≈ 2266 − 261 = 2005,

in agreement with the histogram illustrated in the right panel of figure 3.
In conclusion, for low rank states with eigenvalues which are not very close to zero, the

BIC and to lesser extent AIC, identify the correct rank with high probability, the latter having
a tendency to overfit the true model. On the other hand, as we will see in the next section, the
BIC may underfit the true model when one or more eigenvalues are small.

6. Study 2: one ion simulations

We have seen that the performance of the model selection criteria depends on the spectrum of
eigenvalues of the true state, and on the number of measurement repetitions. To investigate
this dependence we performed a statistical experiment with three one-ion states (k = 1) of
different degrees of purity: a pure state, one with eigenvalues (0.95, 0.05), and the other
with eigenvalues (0.72, 0.28). For each state we simulated datasets with a varying number
of repetitions n = 10, 50, 100, 250, 500. Table 2 shows the number of times (out of 1000
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Figure 4. Mean square error for rank 1 (black circle) and rank 2 (red
circle) estimators, as function of the number of measurement repetitions n =

10, 50, 100, 250, 500. Left: state 1 (pure); middle: state 2 (almost pure); right:
state 3 (mixed).

samples) BIC and AIC choose the correct rank of the state, for all possible choices of states
and measurement repetitions. As expected, in the case of the the pure and the mixed states both
criteria require a small number of repetitions (of the order of 50) to give the correct answer. In
the case of the almost pure state, we see a clear dependence with n: for small n the difference
between the log-likelihoods does not off-set the complexity penalty and both criteria choose
rank one; at n = 500 the balance tips in favour of the rank 2 model, with AIC switching faster
than BIC, on average.

Figure 4 shows the mean square errors (MSE) of the two MLEs

MSE(r) := E(‖ρ̂r − ρ‖
2
2), r = 1, 2

as a function of n for each of the three states, with the pure state (rank one) estimator in black
and the mixed state (rank two) estimator in red. For the pure state (left panel), the rank two
estimator has a larger MSE due to the variance contribution from the third parameter, but
the relative difference between the two MSE’s is small for all n. In this case the rank one
estimator proposed by both criteria is optimal both from the point of view of parsimony, as
well as estimation error. For the mixed state (right panel), the rank one estimator has a large
bias which dominates the MSE, while the rank two MSE decreases at rate 1/n, as expected. At
n = 50 the relative difference in risk is significant and both criteria choose the optimal rank-two
estimator. The most interesting case is that of the almost pure state (middle panel). Here we see
that the relative difference in MSE is not significant for small and medium number of repetitions
(n = 10, 50, 100), but for larger n the error of the pure state estimator is dominated by its bias
while the variance of the full state estimator becomes very small. This behaviour is picked up
by the model selection criteria, which on average switch to the more complex model when n is
in the interval between 200 and 500.

In conclusion, the study shows that both methods become more sensitive to the true rank of
the state as the number of repetitions increases, and the switching point increases (on average)
with the purity of the state. As for the estimation error, the switch to the higher rank model
appears to happen in the region where the MSE’s of the two estimators starts to diverge from
each other, which shows that even if the result is suboptimal for small n, the relative difference
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Figure 5. Log-likelihood values for the MLE as a function of rank.

in errors remains small. Finally, the BIC is more aggressive in selecting the lower complexity
model, due to the additional log-factor in the penalty.

7. Study 3: model selection for four ions real data

In the third study, we applied the model selection methods to experimental data provided by
Rainer Blatt’s group from the University of Innsbruck. The aim of the experiment [11] was
to create a particular four ions bound entangled state of rank 4 called Smolin state [67], and
the measurement dataset consisted of counts for the 34 measurement settings, with a number
n = 4800 of repetitions for each setting. We computed the MLEs ρ̂r for all ranks r between
1 and 16, and found that the corresponding log-likelihoods reach a plateau at rank 10 (see
figure 5) which indicates that the rank 10 model is already sufficiently rich to describe the
measurement data. Reinforcing this conclusion, we found that the value of the ML for rank 10
(and the subsequent ones) was slightly larger than that of that of the ML over all states computed
with Hradil’s iterative method [59], probably due to the fact that the latter had not reached the
true maximum after 1000 iterations.

The values of the AIC and BIC for all ranks are shown on the left side of table 3. The two
criteria reach minima at ranks r = 6 and respectively r = 9, as a result of the trade-off between
the increasing penalty and the log-likelihood. As expected, the BIC chooses a smaller rank due
to its larger complexity penalty, but both methods capture the top four eigenvalues of order 10−1

and a few of the following ones of order 10−2 which account for experimental imprecision in
creating the state. On the right side of table 3 we listed for comparison the eigenvalues of the
rank 10 and full rank estimators, showing perfect agreement in the first two decimal places. We
emphasize that results should be taken as an indication that the experimental data is consistent
with models whose rank could be chosen somewhere between 6 and 10, rather than answering
the ill posed question ‘what is the rank of the state’. To make a more informed decision on
the final choice of model, one can additionally use different model testing procedures such as
the Pearson chi-square test discussed below. As we will see, the various arguments converge
towards the conclusion that the rank 6 estimator may be too conservative, while the rank 10
model already fits the data very well.
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Table 3. Left: values of AIC and BIC for the MLEs of ranks 1–16. The minimum
values of the two criteria are attained at ranks r = 9 and respectively r = 6.
Right: eigenvalues of the MLEs of rank 10 and 16 in decreasing order.

Eigenvalues Eigenvalues
Rank AIC BIC MLE rank 10 MLE rank 16
1 2 397 395 2 397 722 2.337 × 10−1 2.332 × 10−1

2 2 217 096 2 217 738 2.290 × 10−1 2.277 × 10−1

3 2 170 638 2 171 573 2.258 × 10−1 2.253 × 10−1

4 2 146 295 2 147 502 1.725 × 10−1 1.721 × 10−1

5 2 145 157 2 146 614 4.599 × 10−2 4.487 × 10−2

6 2 144 830 2 146 515 2.656 × 10−2 2.445 × 10−2

7 2 144 719 2 146 611 2.385 × 10−2 2.229 × 10−2

8 2 144 652 2 146 728 1.948 × 10−2 1.884 × 10−2

9 2 144 641 2 146 880 1.226 × 10−2 1.155 × 10−2

10 2 144 648 2 147 028 1.067 × 10−2 1.001 × 10−2

11 2 144 664 2 147 164 0 6.057 × 10−3

12 2 144 680 2 147 279 0 2.751 × 10−3

13 2 144 694 2 147 369 0 6.779 × 10−4

14 2 144 704 2 147 433 0 5.278 × 10−6

15 2 144 710 2 147 472 0 2.153 × 10−6

16 2 144 712 2 147 484 0 1.702 × 10−16

7.1. Pearson χ2-test

As an additional tool for probing the conclusions of the model selection procedures, we recast
the problem as that of testing between the hypotheses:{

H0 = ‘the dataset is generated by a state of rank at most r ’,

H1 = ‘the dataset is generated by a state of rank higher than r ’.

A standard approach to such a problem is based on using the Pearson χ2-statistic. Following
the general procedure described in the appendix, we consider the rank r MLE ρ̂r with expected
number of counts E(s|d) := nPρ̂r (s|d), and define the Pearson χ 2-statistic

T (r)=

∑
s,d

(N (s|d)− E(s|d))2

E(s|d)
, (23)

where N (s|d) are the counts from the real data. Under the hypothesis H0, the Pearson statistic
has an asymptotic χ2 distribution with number of degrees of freedom equal to the number of
free parameters of the dataset minus the number of parameters of the model

df(r) := 34
× (24

− 1)− p(r, 4).

Therefore one can define the (asymptotically) level α test{
if T 6 tα : accept H0,

if T > tα : accept H1,
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Figure 6. Pearson χ2 statistic T (blue line), the limit χ2 distribution (red
curve) and the parametric bootstrap distribution for 100 bootstrap samples. The
boostrap distribution is shifted with respect to the χ2 due to the fact that the state
is close to the boundary of the states space and the asymptotic theory does not
hold. Based on the value of T we conclude that the hypothesis H0 is not rejected
for any reasonable significance level.

where the threshold tα is chosen such that P(Y > tα)= α for a χ2(d f (r))-distributed random
variable Y . In practice the χ2 approximation works well for pure states (r = 1), and small rank
states which have only a few small eigenvalues. However, if the state has a significant number
of small eigenvalues, the distribution of T (r) may differ significantly from the asymptotic
χ2 distribution. We will not pursue a theoretical analysis here, but instead use bootstrap
techniques [58] to estimate the distribution of T (r) and then perform the test with respect to the
bootstrap distribution. The idea of bootstrap is to use the measurement data itself to construct
a distribution which (under the hypothesis H0) approximates that of T (r), and therefore can be
used to define the threshold tα instead of the χ2 distribution.

The bootstrap distributions are constructed as follows:

(1) compute the MLE ρ̂r and its probability distribution Pρ̂r (s|d);
(2) generate a large number N of independent datasets from the distribution Pρ̂r (s|d) of the

maximum likelihood estimation;

(3) compute the MLEs ρ̂boot
1 , . . . , ρ̂boot

N for the bootstrap datasets;

(4) compute the Pearson χ2 statistic for each bootstrap sample and its MLE as in (23);

(5) apply the χ 2 test using the empirical distribution of the boostrap χ2 statistics.

The results of applying the χ2 test based on the bootstrap distribution to the rank 10 model
are illustrated in figure 6. The value of the test is T = 1039 is which means that the hypothesis
H0 is accepted. A similar test for the rank 9 leads to the same conclusion but in the case of the
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rank 6 model the hypothesis H0 is rejected. Therefore, the Pearson test together with the model
selection criteria indicate that a good choice for the rank of the estimator is between 7 and 9.

8. Conclusions and outlook

Statistical inference has become a key tool in interpreting the measurement data in quantum
engineering experiments, which require precise, efficient and informative estimation methods.
However, standard full state tomography becomes unfeasible for large dimensional quantum
systems [44]. In this paper we proposed model selection as a general principle for approaching
state estimation problems. As in [45, 46, 49] the aim is to reduce the dimensionality of
the problem by taking advantage of the ‘sparsity’ properties of quantum states in realistic
experimental settings. The route to this goal is however different. The philosophy in model
selection is to try to find the simplest, or most parsimonious explanation of the data, by fitting
different models (often of increasing complexity) and choosing the estimator with the best trade-
off between likelihood and complexity. Concretely, we looked at the problem of selecting the
rank of the estimator, by using two well known methods: AIC and the BIC. In both cases the
fit-complexity trade-off is realized by penalizing the log-likelihood of the data with a measure
of complexity proportional to the number of parameters of the fixed rank model. We have tested
AIC and BIC in several real data and simulation studies which we summarize here.

Pure states. We studied the performance of (rank one) ML for pure states and found a very
good agreement with the asymptotic predictions based on Fisher information and the efficiency
of the MLE. More interestingly, we found that the MSE is only slightly larger than the MSE
of the best possible measurement predicted by quantum version of the asymptotic theory. In
particular this rules out the possibility of significantly improving the MSE by means of adaptive
measurement design techniques. The (asymptotic) MSE of the full counts dataset was compared
to that of the ‘coarse grained’ data obtained by estimating the means of the Pauli products
corresponding to each measurement setting, as used in compressed sensing algorithms [45, 46].
For four ions, the latter is an order of magnitude larger than the former due to the loss of
information when discarding the full counts statistics.

Study 1. For four ions states of ranks between 1 and 3 we found that both AIC and BIC
identify the correct rank in 80–90% of the cases, when the smallest non-zero eigenvalue is not
too close to zero. The results are explained by using the ML asymptotic theory.

Study 2. We analysed the performance of AIC and BIC as a function of the number of
measurement repetitions and the purity of the state, for a toy example consisting of one ion
state. With only a small number of repetitions, both methods identify the correct rank for pure
and ‘pretty mixed’ states. For an ‘almost pure’ state, the model choice switches to rank 2 as the
number of repetitions increases. The switching happens roughly at the point where the MSE
of the ‘wrong’ rank 1 estimator becomes significantly larger that that of the correct model,
indicating that model selection is only slightly suboptimal in terms of the MSE.

Study 3. We applied model selection to the four ions experimental data provided by Rainer
Blatt’s group from the University of Innsbruck. The target state of the experiment was an equal
mixture of four orthogonal pure states, and BIC and AIC selected rank 6 and respectively 9,
with both estimators capturing the principle eigenvalues and (some of) the noisy components
due to imperfections in the preparation procedure, of the order 10−2. While the BIC prediction
seems too conservative, we find that a rank 10 estimator gives a very good explanation of the
data from several perspectives: log-likelihood values, eigenvalues of the estimators, hypothesis
testing.
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Overall, the numerical results indicate that model selection gives sensible answers, and can
be used as an alternative to full tomography and compressed sensing. The results presented in
this paper and other ongoing studies which were not included lead to the following conclusions
regarding the accuracy of the rank-selected estimators in comparison to standard (full rank)
MLE. The former is more accurate (with respect to the MSE) for pure states (cf sections 3
and 6), and states with eigenvalues which are well separated from zero, cf section 5. In the
real data example we found that the rank 10 estimator had slightly larger likelihood that the
estimator obtained by applying Hradil’s iterative method [59], which indicates that their errors
are probably very similar. On the other hand, model selection can have higher MSE than
standard MLE for small number of measurement repetitions when the state has several very
small eigenvalues (cf section 6), due to the bias introduced by the projection onto the lower
rank space. However the in-depth one ion study shows that the relative difference in MSE is not
significant, with AIC being closer to MSE optimality, in broad agreement with the theoretical
properties. A more general study which goes beyond the scope of this paper, should compare
these and other rank selection methods, e.g. [57] based on the spectral properties of the state
and the number of measurement repetitions.

In principle the rank selection method works for any state, but is designed to take advantage
of the lower complexity of small rank states. The drawback is the computational complexity of
finding the MLE over states of fixed rank. Therefore it would be interesting to see whether
ideas from the different methods can be combined in a fast, scalable and statistically efficient
estimator. A possible future direction is apply model selection to state estimation for other
types of models such as classes of matrix product states, and to system identification problems.
Another topic of interest is the computation of confidence intervals (error-bars). Last but
not least, there is a need for a deeper theoretical understanding of the quantum tomography
statistical model. We mention two important questions: how does the state’s proximity to the
boundary affect the standard asymptotic theory, and how does the model behave for a large
number of ions? This would hopefully lead to improved estimation algorithms and information
criteria for model selection tailored to quantum tomography.
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Appendix. Pearson χ2-statistic and Wilks’ theorem

For reader’s convenience we collect here two important results used in the paper. We refer
to [58, 66] for more details.

Theorem A.1 (Pearson’s χ 2 statistic). Let X1, . . . Xn be i.i.d. samples from the discrete
distribution Pθ over {1, . . . , p}, where P := {Pθ : θ ∈2⊂ Rm

} is a sufficiently regular model
with 2 an open set. Let N (i) be the number of counts of the outcome i in the sample, and let
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E(i)= nPθ(i) be the expected counts. Then, the Pearson χ 2 statistic

T :=
∑

i

(N (i)− E(i))2

E(i)

converges in law as n → ∞ to the χ2 distribution with m degrees of freedom.

Theorem A.2 (Wilks’ Theorem). Let P := {Pθ : θ ∈2= Rm
} be a sufficiently regular model

and let P0 be the submodel with parameter space 20 := {θ ∈2 : θ1 = . . .= θk = 0} for some
k 6 m. Let X := {X1, . . . , Xn} be i.i.d. samples from Pθ and let 3 be the log-likelihood ratio
statistic

3 := 2

[
sup
θ ′∈2

`θ ′(X)− sup
θ ′

0∈20

`θ ′

0
(X)

]
.

If θ ∈20, then 3 converges in law as n → ∞ to the χ2 distribution with k degrees of freedom.

In both cases, it is essential that the parameter does not lie on the boundary, in order to be
able to apply the asymptotic normality theory of the MLE. This condition is violated for states
whose rank is strictly smaller than that of the fixed rank model in which they are considered.
Therefore care must be taken before applying these results directly, and indeed our results
show that the χ2 asymptotics fail in some cases. A more refined asymptotic analysis taking
into account the boundary effects will be pursued elsewhere.
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[18] Bužek V 2004 Lect. Notes Phys. 649 189
[19] Teo Y S, Zhu H, Englert B G, Rehacek J and Hradil Z 2011 Phys. Rev. Lett. 107 020404
[20] Teo Y S, Englert B G, Rehacek J and Hradil Z 2011 Phys. Rev. A 84 062125

New Journal of Physics 14 (2012) 105002 (http://www.njp.org/)

http://dx.doi.org/10.1038/4531003a
http://dx.doi.org/10.1098/rsta.2003.1227
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://dx.doi.org/10.1103/PhysRevLett.94.070402
http://dx.doi.org/10.1126/science.1103190
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1103/PhysRevLett.90.193601
http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1088/1367-2630/12/4/043034
http://dx.doi.org/10.1103/PhysRevLett.105.200504
http://dx.doi.org/10.1088/1367-2630/11/2/023028
http://arxiv.org/abs/1202.5136
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://arxiv.org/abs/1109.5478v1
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1103/PhysRevLett.107.020404
http://dx.doi.org/10.1103/PhysRevA.84.062125
http://www.njp.org/


25
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