6 research outputs found

    Percutaneous coronary intervention in Europe 1992-2003

    Full text link
    peer reviewedAims: The purpose of this registry is to collect data on trends in interventional cardiology within Europe. Special interest focuses on relative increases and ratios in newer revascularization approaches and its distribution in different regions in Europe. We report the data of the year 2003 and give an overview of the development of coronary interventions since 1992, when the first data collection was performed. Methods and results: Questionnaires were distributed yearly to delegates of all national societies of cardiology represented in the European Society of Cardiology to collect the case numbers of all local institutions and operators. The overall numbers of coronary angiographies increased from 1992 to 2003 from 684,000 to 1,993,000 (from 1,250 to 3,500 per million inhabitants). The respective numbers for percutaneous coronary interventions (PCI-coronary angioplasty) and coronary stenting procedures increased from 184,000 to 733,000 (from 335 to 1,300) and from 3,000 to 610,000 (from 5 to 1,100), respectively. Germany has been the most active country for the past years with 653,000 angiographies (7,800), 222,000 angioplasties (2,500), and 180,000 stenting procedures (2,200) in 2003. The indication has shifted towards acute coronary syndromes, as demonstrated by raising rates of interventions for acute myocardial infarction over the last decade. The procedures are more readily performed and safer, as shown by increasing rate of “ad hoc” PCI and decreasing need for emergency coronary artery bypass surgery (CABG). In 2003, use of drug-eluting stents had further increased. However, an enormous variability is reported with the highest rate in Portugal (55%). Conclusion: Interventional cardiology in Europe is still expanding, mainly but not exclusively due to rapid growth in the eastern European countries. A number of new coronary revascularization procedures introduced over the years have all but disappeared. Only stenting has experienced an exponential growth. The same can be forecast for drug-eluting stenting

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Discovery and refinement of loci associated with lipid levels

    Get PDF
    <p>Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P <5 x 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.</p>

    Common variants associated with plasma triglycerides and risk for coronary artery disease

    No full text
    Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P &lt; 5 × 10 -8 for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CA

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore