309 research outputs found

    Memory box: uma tecnologia para o cuidado neonatal e pediátrico

    Get PDF
    Estudo descritivo exploratório, quantitativo, tipo survey transversal, que tem por objetivo analisar como a Memory Box pode ser utilizada, na perspectiva da equipe de enfermagem, como uma tecnologia para o cuidado pediátrico e neonatal. A população foi constituída por 143 profissionais de Enfermagem de um hospital pediátrico de Santa Catarina. A coleta de dados foi realizada no período de agosto a outubro de 2013, a partir da aplicação de um instrumento. Os dados obtidos foram analisados utilizando estatística simples, exploratória e o teste não paramétrico, adotando nível de significância de

    Time-Resolved Spectroscopy of the 3 Brightest and Hardest Short Gamma-Ray Bursts Observed with the FGST Gamma-Ray Burst Monitor

    Full text link
    From July 2008 to October 2009, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (FGST) has detected 320 Gamma-Ray Bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power-law with index ~-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts, and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices ({\alpha}) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched towards higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follows their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises, and we confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.Comment: 14 pages, 10 figures, 9 tables, Accepted for publication in the Astrophysical Journal September, 23 2010 (Submitted May, 16 2010) Corrections: 1 reference updated, figure 10 captio

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering

    Get PDF
    We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3,275 square degrees. Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broadband shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a LCDM expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of DA, H, and growth all separately require dark energy at z > 0.57, and when combined imply \Omega_{\Lambda} = 0.74 +/- 0.016, independent of the Universe's evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.Comment: 19 pages, 11 figures, submitted to MNRAS, comments welcom

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    A pharmacogenomic assessment of psychiatric adverse drug reactions to levetiracetam

    Get PDF
    OBJECTIVE: Levetiracetam (LEV) is an effective anti-seizure medicine, but 10-20% of people treated with LEV report psychiatric side-effects and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioural ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioural disorder (n=149) or psychotic reaction (n=37) to LEV-exposed people with no history of psychiatric ADRs (n=920). All samples were of European ancestry. We performed GWAS analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n=18) and controls (n=122). RESULTS: Univariate GWAS found no significant associations with either LEV-ADR. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to controls (p = 0.0097, estimate = 0.4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV-ADRs

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Development and Initial Validation of the PEG, a Three-item Scale Assessing Pain Intensity and Interference

    Get PDF
    Inadequate pain assessment is a barrier to appropriate pain management, but single-item “pain screening” provides limited information about chronic pain. Multidimensional pain measures such as the Brief Pain Inventory (BPI) are widely used in pain specialty and research settings, but are impractical for primary care. A brief and straightforward multidimensional pain measure could potentially improve initial assessment and follow-up of chronic pain in primary care. To develop an ultra-brief pain measure derived from the BPI. Development of a shortened three-item pain measure and initial assessment of its reliability, validity, and responsiveness. We used data from 1) a longitudinal study of 500 primary care patients with chronic pain and 2) a cross-sectional study of 646 veterans recruited from ambulatory care. Selected items assess average pain intensity (P), interference with enjoyment of life (E), and interference with general activity (G). Reliability of the three-item scale (PEG) was α = 0.73 and 0.89 in the two study samples. Overall, construct validity of the PEG was good for various pain-specific measures (r = 0.60–0.89 in Study 1 and r = 0.77–0.95 in Study 2), and comparable to that of the BPI. The PEG was sensitive to change and differentiated between patients with and without pain improvement at 6 months. We provide strong initial evidence for reliability, construct validity, and responsiveness of the PEG among primary care and other ambulatory clinic patients. The PEG may be a practical and useful tool to improve assessment and monitoring of chronic pain in primary care

    A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a spiral structure coated by an electron dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualised by high resolution freeze fracture scanning electron microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum infection contain a highly organised skeleton structure underlying a specialised region of membrane. We propose that the spiral and dense coat organise the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells
    corecore