1,670 research outputs found
The function and evolution of the restriction factor viperin in primates was not driven by lentiviruses
Abstract Background Viperin, also known as RSAD2, is an interferon-inducible protein that potently restricts a broad range of different viruses such as influenza, hepatitis C virus, human cytomegalovirus and West Nile virus. Viperin is thought to affect virus budding by modification of the lipid environment within the cell. Since HIV-1 and other retroviruses depend on lipid domains of the host cell for budding and infectivity, we investigated the possibility that Viperin also restricts human immunodeficiency virus and other retroviruses. Results Like other host restriction factors that have a broad antiviral range, we find that viperin has also been evolving under positive selection in primates. The pattern of positive selection is indicative of Viperin's escape from multiple viral antagonists over the course of primate evolution. Furthermore, we find that Viperin is interferon-induced in HIV primary target cells. We show that exogenous expression of Viperin restricts the LAI strain of HIV-1 at the stage of virus release from the cell. Nonetheless, the effect of Viperin restriction is highly strain-specific and does not affect most HIV-1 strains or other retroviruses tested. Moreover, knockdown of endogenous Viperin in a lymphocytic cell line did not significantly affect the spreading infection of HIV-1. Conclusion Despite positive selection having acted on Viperin throughout primate evolution, our findings indicate that Viperin is not a major restriction factor against HIV-1 and other retroviruses. Therefore, other viral lineages are likely responsible for the evolutionary signatures of positive selection in viperin among primates.</p
Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals
TRIM5α provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5α and TRIM22, which in both proteins fall predominantly in the β2-β3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution
Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein
Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP) from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose) polymerase (PARP)–like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes
An expanded clade of rodent Trim5 genes
AbstractTrim5α from primates (including humans), cows, and rabbits has been shown to be an active antiviral host gene that acts against a range of retroviruses. Although this suggests that Trim5α may be a common antiviral restriction factor among mammals, the status of Trim5 genes in rodents has been unclear. Using genomic and phylogenetic analyses, we describe an expanded paralogous cluster of at least eight Trim5-like genes in mice (including the previously described Trim12 and Trim30 genes), and three Trim5-like genes in rats. Our characterization of the rodent Trim5 locus, and comparison to the Trim5 locus in humans, cows, and rabbits, indicates that Trim5 has undergone independent evolutionary expansions within species. Evolutionary analysis shows that rodent Trim5 genes have evolved under positive selection, suggesting evolutionary conflicts consistent with important antiviral function. Sampling six rodent Trim5 genes failed to reveal antiviral activities against a set of eight retroviral challenges, although we predict that such activities exist
Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
A modular CRISPR screen identifies individual and combination pathways contributing to HIV-1 latency
Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector
A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
- …