41 research outputs found

    Parkin-independent mitophagy controls chemotherapeutic response in cancer cells

    Get PDF
    Mitophagy is an evolutionarily conserved process that selectively targets impaired mitochondria for degradation. Defects in mitophagy are often associated with diverse pathologies, including cancer. Because the main known regulators of mitophagy are frequently inactivated in cancer cells, the mechanisms that regulate mitophagy in cancer cells are not fully understood. Here, we identified an E3 ubiquitin ligase (ARIH1/HHARI) that triggers mitophagy in cancer cells in a PINK1-dependent manner. We found that ARIH1/HHARI polyubiquitinates damaged mitochondria, leading to their removal via autophagy. Importantly, ARIH1 is widely expressed in cancer cells, notably in breast and lung adenocarcinomas; ARIH1 expression protects against chemotherapy-induced death. These data challenge the view that the main regulators of mitophagy are tumor suppressors, arguing instead that ARIH1-mediated mitophagy promotes therapeutic resistance

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Escape from cell death in cancer : mitophagy and regulation of caspase independent cell death

    No full text
    Une des caractéristiques des cellules tumorales est leur habileté à échapper à la mort cellulaire. Pour y parvenir, elles ont développé une stratégie consistant à éliminer sélectivement les mitochondries endommagées par un processus de mitophagie. L’acteur principal de la mitophagie est l’ubiquitine ligase Parkin ; mais elle est mutée ou absente dans la majorité des cancers. Nous avons découvert qu’une autre ligase, ARIH1, appartenant à la même famille des RBR ligases que Parkin, est capable d’induire la mitophagie en réponse à un stress. Contrairement à Parkin, ARIH1 est surexprimée dans de nombreux cancers, notamment dans les cancers du poumon permettant ainsi une augmentation de la mitophagie conférant ainsi à ces cellules une résistance au stress induit par des agents chimiothérapeutiques. La mort cellulaire la mieux caractérisée est l’apoptose qui est directement liée à l’activation de caspases. Il a pourtant été établi qu’une inhibition des caspases ne permet pas d’empêcher la mort cellulaire car il existe la « mort cellulaire indépendante des caspases » ou CICD. Cependant, sa définition moléculaire précise reste toujours inconnue. Ainsi dans ce but, un criblage siRNA pan génomique a révélé l’importance de la voie ubiquitine/protéasome. Nous avons pu identifier en particulier une enzyme E3 ligase comme étant protectrice de la CICD. Cette enzyme est surexprimée dans de nombreux cancers et pourrait permettre aux cellules cancéreuses de résister à la CICD et favoriser la progression tumorale. En résumé, ce travail a permis de souligner l’importance des ubiquitines ligases dans les mécanismes d’échappement à la mort cellulaire mis en place par les cellules cancéreuses.One of the hallmarks of tumor cells is their ability to escape cell death.To achieve this, they have developed a strategy of selectively removing damaged mitochondria by a process of mitophagy. The main actor of mitophagy is the ubiquitin ligase Parkin; but it is mutated or absent in the majority of cancers. We have discovered that another ligase, ARIH1, belonging to the same family of RBR ligases as Parkin, is capable of inducing mitophagy in response to stress. In contrast to Parkin, ARIH1 is overexpressed in many cancers, especially in lung cancer, allowing an increase in mitophagy conferring resistance to stress induced by chemotherapeutic agents. The most characterized cell death pathway is apoptosis, which is directly related to caspases activation. However, it has been established, that caspase inhibition does not prevent cell death because there is another type of cell death called "caspase-independent cell death" or CICD. However, its precise molecular definition is still unknown. Thus for this purpose, pan-genomic siRNA screening was performed and revealed the importance of the ubiquitin / proteasome pathway. In particular, we have been able to identify an enzyme E3 ligase as being protective towards CICD. This enzyme is overexpressed in many cancers and could allow cancer cells to resist CICD and promote tumor progression. In summary, this work has highlighted the importance of ubiquitin ligases in the escape mechanisms to cell death implemented by cancer cells

    Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides

    No full text
    Cancer cells exhibit a dynamic metabolic landscape and require a sufficient supply of nucleotides and other macromolecules to grow and proliferate. To meet the metabolic requirements for cell growth, cancer cells must stimulate de novo nucleotide synthesis to obtain adequate nucleotide pools to support nucleic acid and protein synthesis along with energy preservation, signaling activity, glycosylation mechanisms, and cytoskeletal function. Both oncogenes and tumor suppressors have recently been identified as key molecular determinants for de novo nucleotide synthesis that contribute to the maintenance of homeostasis and the proliferation of cancer cells. Inactivation of tumor suppressors such as TP53 and LKB1 and hyperactivation of the mTOR pathway and of oncogenes such as MYC, RAS, and AKT have been shown to fuel nucleotide synthesis in tumor cells. The molecular mechanisms by which these signaling hubs influence metabolism, especially the metabolic pathways for nucleotide synthesis, continue to emerge. Here, we focus on the current understanding of the molecular mechanisms by which oncogenes and tumor suppressors modulate nucleotide synthesis in cancer cells and, based on these insights, discuss potential strategies to target cancer cell proliferation
    corecore