30 research outputs found

    Mechanics: non-classical, non-quantum

    Full text link
    A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce quantum results over experimentally tested regimes while having a well defined classical limit, and hence are viable alternative theories. We illustrate an NCQ by considering an explicit class of NCQ mechanics. Here this class will be arrived at via a natural generalization of classical mechanics formulated in terms of a probability density functional

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Kaluza-Klein Reduction of Pure Gravity and its Implications for K3 Surface Compactifications

    No full text
    Kaluza demonstrated that a geometrical unification of Einsteinian gravity and Maxwell’s equations could occur in five (4+1) dimensions if the dependence on the fourth spatial coordinate is ignorable. Klein noted that the last assumption would be natural for a compact extra dimension (i.e., a circle, rather than a line) of very small size. Since this initial proposal dimensional reduction has been incorporated into string theory, where the compactification manifold of choice is a Calabi-Yau manifold. In this dissertation, we investigate reduction via the Kaluza-Klein mechanism by considering the general compactification from D to d (D \u3e d) dimensions of pure gravity, wherein the internal metric moduli are promoted to moduli fields. An essential point is that D-dimensional equations of motion must be satisfied, even in the effective degrees of freedom (the moduli fields). If the d-dimensional equations of motion imply the D-dimensional equations the effective theory is consistent. As a first pass the truncation to massless modes is made, but with a special gauge choice, transverse/traceless gauge, imposed on the internal metric. Equivalently, compensating fields, which are intended to assure consistency, are included in the metric ansatz. It is concluded that the consistency of the compactification demands that all massless and massive Kaluza-Klein modes be included in the lower dimensional theory. Motivated by the importance and ubiquitousness of K3 compactifications, a review of K3 geometry is presented. The E8 ⊕ E8 ⊕ U31,1 and Sp(32)/Z2 ⊕ U31,1 decompositions of the (co)homology lattice ofthe K3 are exhibited explicitly in terms of a natural orbifold basis, which augments the abstract derivations available in the literature. A novel feature is introduced – anapproximate, but explicit, metric on K3, which exactly generates a K3 metric in thelimit of small fiber and large base

    Kaluza-Klein Reduction of Pure Gravity and its Implications for K3 Surface Compactifications

    No full text
    Kaluza demonstrated that a geometrical unification of Einsteinian gravity and Maxwell’s equations could occur in five (4+1) dimensions if the dependence on the fourth spatial coordinate is ignorable. Klein noted that the last assumption would be natural for a compact extra dimension (i.e., a circle, rather than a line) of very small size. Since this initial proposal dimensional reduction has been incorporated into string theory, where the compactification manifold of choice is a Calabi-Yau manifold. In this dissertation, we investigate reduction via the Kaluza-Klein mechanism by considering the general compactification from D to d (D \u3e d) dimensions of pure gravity, wherein the internal metric moduli are promoted to moduli fields. An essential point is that D-dimensional equations of motion must be satisfied, even in the effective degrees of freedom (the moduli fields). If the d-dimensional equations of motion imply the D-dimensional equations the effective theory is consistent. As a first pass the truncation to massless modes is made, but with a special gauge choice, transverse/traceless gauge, imposed on the internal metric. Equivalently, compensating fields, which are intended to assure consistency, are included in the metric ansatz. It is concluded that the consistency of the compactification demands that all massless and massive Kaluza-Klein modes be included in the lower dimensional theory. Motivated by the importance and ubiquitousness of K3 compactifications, a review of K3 geometry is presented. The E8 ⊕ E8 ⊕ U31,1 and Sp(32)/Z2 ⊕ U31,1 decompositions of the (co)homology lattice ofthe K3 are exhibited explicitly in terms of a natural orbifold basis, which augments the abstract derivations available in the literature. A novel feature is introduced – anapproximate, but explicit, metric on K3, which exactly generates a K3 metric in thelimit of small fiber and large base

    Gold and Gold Mining

    No full text
    corecore