7 research outputs found

    The Saving Power of Community Creativity: Highlights of Arts, Culture, and Creative Placemaking Responses to COVID-19

    Get PDF
    For several years, the Center for Community Progress (Community Progress) and Metris Arts Consulting have explored how arts and culture organizations are revitalizing communities that have been hit hard with vacancy and abandonment. In mid-2020, as we began to understand the pandemic's devastating health, economic, and social impacts on communities and the policy demands surrounding the calls for racial justice, we also began hearing how community-based organizations using arts and culture had shifted their work to provide critical community support. This resource highlights the efforts of creative leaders during the pandemic and also seeks to inspire others trying to address acute needs.

    Effectiveness of a Delirium Prevention Initiative on an Inpatient Neuroscience Unit

    No full text
    BACKGROUND: Delirium frequently develops in hospitalized patients and results in increased mortality, longer length of stay, and need for transitional care. Neurological patients are at an increased risk for developing delirium. There is a paucity of research on effective prevention strategies for this population. PURPOSE: The objectives of this project were to improve nurses\u27 knowledge and confidence in delirium prevention, design a delirium volunteer program, and establish ongoing monitoring for continued improvement. METHODS: This study is a quality improvement project using a pretest-posttest design to examine the benefits of refocusing care from delirium management to delirium prevention. The sample included 304 patients pre and 332 post intervention. The interventions included delirium education for nurses and the recruitment of trained volunteers to implement nonpharmacological, multicomponent delirium prevention interventions. RESULTS: Forty-eight nurses completed delirium education, and 11 volunteers were recruited and trained. There was a significant increase in nursing knowledge (z = 3.967, P \u3c .0005) and confidence (z = 3.989, P \u3c .0005). Volunteers visited 54 patients and implemented 99 interventions post implementation. CONCLUSION: This pre-post improvement project provides beginning evidence that nursing education increased nurses\u27 knowledge and confidence in preventing and treating delirium. Trained volunteers supported using nonpharmacological delirium prevention interventions, but ongoing evaluation is needed to determine the impact of volunteers on delirium rates

    sPlot - A new tool for global vegetation analyses

    Get PDF
    Dengler, Jurgen/0000-0003-3221-660X; Chytry, Milan/0000-0002-8122-3075; de Gasper, Andre Luis/0000-0002-1940-9581; Marceno, Corrado/0000-0003-4361-5200; Swacha, Grzegorz/0000-0002-6380-2954; He, Tianhua/0000-0002-0924-3637; Haider, Sylvia/0000-0002-2966-0534; Kuhn, Ingolf/0000-0003-1691-8249; Svenning, Jens-Christian/0000-0002-3415-0862; Jansen, Florian/0000-0002-0331-5185; Casella, Laura/0000-0003-2550-3010; Schmidt, Marco/0000-0001-6087-6117; Chepinoga, Victor/0000-0003-3809-7453; Petrik, Petr/0000-0001-8518-6737; Willner, Wolfgang/0000-0003-1591-8386; Jansen, Steven/0000-0002-4476-5334; De Sanctis, Michele/0000-0002-7280-6199; Niinemets, Ulo/0000-0002-3078-2192; Pauchard, Anibal/0000-0003-1284-3163; Vibrans, Alexander C./0000-0002-8789-5833; Biurrun, Idoia/0000-0002-1454-0433; De Patta Pillar, Valerio/0000-0001-6408-2891; Phillips, Oliver L/0000-0002-8993-6168; Sibik, Jozef/0000-0002-5949-862X; Lenoir, Jonathan/0000-0003-0638-9582; Venanzoni, Roberto/0000-0002-7768-0468; Gutierrez, Alvaro G./0000-0001-8928-3198; Cayuela, Luis/0000-0003-3562-2662; Nobis, Marcin/0000-0002-1594-2418; Agrillo, Emiliano/0000-0003-2346-8346; Manning, Peter/0000-0002-7940-2023; Venanzoni, Roberto/0000-0002-7768-0468; Virtanen, Risto/0000-0002-8295-8217; Higuchi, Pedro/0000-0002-3855-555X; Sopotlieva, Desislava/0000-0002-9281-7039; Kuzemko, Anna/0000-0002-9425-2756; Hatim, Mohamed/0000-0002-0872-5108; Mencuccini, Maurizio/0000-0003-0840-1477; Enquist, Brian J./0000-0002-6124-7096; De Bie, Els/0000-0001-7679-743X; Samimi, Cyrus/0000-0001-7001-7893; Nowak, Arkadiusz/0000-0001-8638-0208; Jimenez-Alfaro, Borja/0000-0001-6601-9597; Font, Xavier/0000-0002-7253-8905; Levesley, Aurora/0000-0002-7999-5519; Acic, Svetlana/0000-0001-6553-3797; Kattge, Jens/0000-0002-1022-8469; Silc, Urban/0000-0002-3052-699X; Arnst, Elise/0000-0003-2388-7428; Moretti, Marco/0000-0002-5845-3198; Kozub, Lukasz/0000-0002-6591-8045; Kacki, Zygmunt/0000-0002-2241-1631; Fagundez, Jaime/0000-0001-6605-7278; Purschke, Oliver/0000-0003-0444-0882; Martynenko, Vasiliy/0000-0002-9071-3789; Jandt, Ute/0000-0002-3177-3669; Peyre, Gwendolyn/0000-0002-1977-7181; SABATINI, FRANCESCO MARIA/0000-0002-7202-7697; Bruelheide, Helge/0000-0003-3135-0356; Wohlgemuth, Thomas/0000-0002-4623-0894; Onyshchenko, Viktor/0000-0001-9079-7241; Kuzmic, Filip/0000-0002-3894-7115; Ejrnaes, Rasmus/0000-0003-2538-8606; Jirousek, Martin/0000-0002-4293-478X; Noroozi, Jalil/0000-0003-4124-2359; Curran, Michael/0000-0002-1858-5612; Baraloto, Christopher/0000-0001-7322-8581; Ozinga, Wim/0000-0002-6369-7859WOS: 000466421500001Aims Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.German Research FoundationGerman Research Foundation (DFG) [DFG FZT 118]; TRY initiative on plant traitsWe are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or digitized them into regional, national or international databases. We also appreciate the support of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118) research platforms, and the organization of three workshops through the sDiv calls. We acknowledge this support with naming the database "sPlot", where the "s" refers to the sDiv synthesis workshops. The study was supported by the TRY initiative on plant traits (http://www.try-db.org). For all further acknowledgements see Appendix S10. We thank Meelis Partel for his very fast and constructive feedback on an earlier version of this manuscript

    sPlot:a new tool for global vegetation analyses

    No full text
    Abstract Aims: Vegetation‐plot records provide information on the presence and cover or abundance of plants co‐occurring in the same community. Vegetation‐plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community‐weighted means and variances of traits using gap‐filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community‐weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale
    corecore