288 research outputs found
Size dependent differences in litter consumption of isopods: preliminary results
A series of experiments were applied to test how leaf orientation within microcosms affect consumption rates (Experiment 1), and to discover intra-specific differences in leaf litter consumption (Experiment 2) of the common isopod species Porcellio scaber and Porcellionides pruinosus. A standardised microcosm setup was developed for feeding experiments to maintain standard conditions. A constant amount of freshly fallen black poplar litter was provided to three distinct size class (small, medium, large) of woodlice. We measured litter consumption after a fortnight. We maintained appr. constant isopod biomass for all treatments, and equal densities within each size class. We hypothesized that different size classes differ in their litter consumption, therefore such differences should occur even within populations of the species. We also hypothesized a marked difference in consumption rates for different leaf orientation within microcosms. Our results showed size-specific consumption patterns for Porcellio scaber: small adults showed the highest consumption rates (i.e. litter mass loss / isopod biomass) in high density microcosms, while medium-sized adults of lower densities ate the most litter in containers. Leaf orientation posed no significant effect on litter consumption.Peer reviewe
DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice
These results show that DX5+NKT cells are a heterogeneous population, depending on the dedicated organ and mouse strain, that has diverse functional capacity
Genomic HIV RNA Induces Innate Immune Responses through RIG-I-Dependent Sensing of Secondary-Structured RNA
Contains fulltext :
108031.pdf (publisher's version ) (Open Access)BACKGROUND: Innate immune responses have recently been appreciated to play an important role in the pathogenesis of HIV infection. Whereas inadequate innate immune sensing of HIV during acute infection may contribute to failure to control and eradicate infection, persistent inflammatory responses later during infection contribute in driving chronic immune activation and development of immunodeficiency. However, knowledge on specific HIV PAMPs and cellular PRRs responsible for inducing innate immune responses remains sparse. METHODS/PRINCIPAL FINDINGS: Here we demonstrate a major role for RIG-I and the adaptor protein MAVS in induction of innate immune responses to HIV genomic RNA. We found that secondary structured HIV-derived RNAs induced a response similar to genomic RNA. In primary human peripheral blood mononuclear cells and primary human macrophages, HIV RNA induced expression of IFN-stimulated genes, whereas only low levels of type I IFN and tumor necrosis factor alpha were produced. Furthermore, secondary structured HIV-derived RNA activated pathways to NF-kappaB, MAP kinases, and IRF3 and co-localized with peroxisomes, suggesting a role for this organelle in RIG-I-mediated innate immune sensing of HIV RNA. CONCLUSIONS/SIGNIFICANCE: These results establish RIG-I as an innate immune sensor of cytosolic HIV genomic RNA with secondary structure, thereby expanding current knowledge on HIV molecules capable of stimulating the innate immune system
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
Isopod distribution and climate change
The unique properties of terrestrial isopods regarding responses to limiting factors such as drought and temperature have led to interesting distributional patterns along climatic and other environmental gradients at both species and community level. This paper will focus on the exploration of isopod distributions in evaluating climate change effects on biodiversity at different scales, geographical regions, and environments, in view of isopods’ tolerances to environmental factors, mostly humidity and temperature. Isopod distribution is tightly connected to available habitats and habitat features at a fine spatial scale, even though different species may exhibit a variety of responses to environmental heterogeneity, reflecting the large interspecific variation within the group. Furthermore, isopod distributions show some notable deviations from common global patterns, mainly as a result of their ecological features and evolutionary origins. Responses to human disturbance are not always traceable, but a trend towards community homogenisation is often found under strong global urbanisation processes. In general, even though it is still not clear how predicted climate change will affect isopod distribution, there is evidence that mixed effects are to be expected, depending on the region under study. We still lack robust and extensive analyses of isopod distributions at different scales and at different biomes, as well as applications of distribution models that might help evaluate future trends
Histological studies on the marsupium of two terrestrial isopods (Crustacea, Isopoda, Oniscidea)
The marsupium, a brood pouch in peracarid crustaceans (Crustacea, Malacostraca) has evolved in terrestrial environment for providing nutrition and optimal conditions for embryogenesis. In the present study we give details on the histology and ultrastructure of its constituting elements such as oostegites and cotyledons. Marsupia of two different eco-morphological types of woodlice, namely the non-conglobating species Trachelipus rathkii Brandt, 1833 and the conglobating species Cylisticus convexus De Geer, 1778 were investigated. Light microscopic (LM) studies showed some differences in the main structure of the two species’ brood pouch: in T. rathkii, a ‘clinger’ type woodlice, the oostegites bend outwards during brood incubation as growing offspring require more space, while in C. convexus, a ‘roller’ type isopod, the sternites arch into the body cavity to ensure space for developing offspring and still allowing conglobation of the gravid females. The quantitative analysis of the oostegites’ cuticle proved that the outer part is about 2.5 - 3 times thicker compared to the inner part in both species. Electron microscopic (TEM) examinations show only small histological differences in the oostegites and cotyledon structure of the two species. Cellular elements and moderately electron dense fleecy precipitate are found in the hemolymph space between the two cuticles of oostegites. The cells contain PAS positive polysaccharide areas. TEM studies revealed some differences in the cotyledon ultrastructure of the two species. Cotyledons of T. rathkii consist of cells with cristate mitochondria and granular endoplasmic reticulum with cisterns. Cotyledons of C. convexus consist of cells with densely cristate mitochondria and ribosomes attached to vesicular membrane structures. In both species cells with electron dense bodies were observed. We conclude that - besides the differences in marsupial shapes - the fine structure of the oostegites and cotyledons is hardly affected by the eco-morphological type, specifically the conglobating or non-conglobating character of the studied species
Effects of set-aside management on certain elements of soil biota and early stage organic matter decomposition in a High Nature Value Area, Hungary
Agricultural intensification is one of the greatest threats to soil biota and function. In contrast, set-aside still remains a management practice in certain agri-environmental schemes. In Hungary, the establishment of sown set-aside fields is a requirement of agri-environmental schemes in High Nature Value Areas. We tested the effects of set-aside management on soil biota (bacteria, microarthropods, woodlice and millipedes), soil properties and organic matter decomposition after an initial establishment period of two years. Cereal – set-aside field pairs, semi-natural grasslands and cereal fields were sampled in the Heves Plain High Nature Value Area in Eastern Hungary, in May 2014. Topsoil samples were taken from each site for physical, chemical, microbial analyses and for extraction of soil microarthropods. Macrodecomposers were sampled by pitfall traps for two weeks. The biological quality of soil was estimated by the integrated QBS index (‘‘Qualità Biologica del Suolo’’, meaning ‘‘Biological Quality of Soil’’) based on diversity of soil microarthropods. To follow early stage organic matter decomposition, we used tea bags filled with a site-independent, universal plant material (Aspalathus linearis, average mass 1.26 ± 0.03 g). Tea bags were retrieved after 1 month to estimate the rate of mass loss. We found significant differences between habitat types regarding several soil physical and chemical parameters (soil pH, K and Na content). The study showed positive effects of set-aside management on soil biodiversity, especially for microarthropods and isopods. However, we did not experience similar trends in relation to soil bacteria and millipedes. There was higher intensity of organic matter decomposition in soils of set-aside fields and semi-natural grasslands (remaining mass on average: 74.17% and 76.6%, respectively) compared to cereal fields (average remaining mass: 81.3%). Out of the biotic components, only the biological quality of soil significantly influenced (even if marginally) plant tissue decomposition. Our results highlight the importance of set-aside fields as shelter habitats for soil biota, especially for arthropods. Set-aside fields that are out of a crop rotation for 2 years could be a valuable option for maintaining soil biodiversity, as these fields may simultaneously conserve elements of above- and below-ground diversity
- …