23 research outputs found

    Ethylacetate fraction of Anthocleista vogelii Planch demonstrates antiobesity activities in preclinical models

    Get PDF
    Purpose: To assess the anti-obesity effect of liquid chromatography mass spectrometry (LCMS) profiled ethylacetate fraction (EF) of Anthocleista vogelii Planch on pancreatic lipase activity in vitro, and on obesity-related hormones in high-fat diet (HFD)-induced obese rats. Methods: Chromatographic analysis of EF to identify bioactive compounds was performed using LCMS electrospray ionization mass spectrometry (ESI-MS) positive mode. Thirty Sprague–Dawley rats were divided into 5 groups (n = 6). Group 1 was fed normal pellet diet, while groups 2 - 5 were fed high-fat diet (HFD) for 14 weeks. The rats were treated for 4 weeks from week 10 with 125 mg/kg of EF (group 3), 250 mg/kg of EF (group 4) or 100 mg/kg of orlistat (group 5). Results: Seven alkaloids were identified in EF, namely, 10-hydroxycamtothecin, moschamindole, camptothecin, moschamine, N6-cis-p-coumaroylserotonin, sinomenine and desacetylcolchicine. The EF of A. vogelii exhibited inhibitory activity against pancreatic lipase with half-maximal inhibitory concentration (IC50) of 8.76 ± 0.110 µg/mL. Rats treated with EF (125 and 250 mg/kg) of A. vogelii showed significantly (p < 0.05) decreased feed intake, body weight, leptin and insulin, when compared to HFD controls. Cortisol, serotonin and noradrenaline were significantly (p < 0.05) increased, but changes in thyroid hormones levels in EF-treated rats were not significant (p > 0.05) when compared to HFD controls. Conclusion: The EF of A. vogelii demonstrate anti-obesity activities by inhibiting pancreatic lipase, elevating serotonin and noradrenaline, and increasing leptin sensitivity, leading consequently to decreased body weight of rats. However, the clinical use of EF of A. vogelii as an antiobesity herbal remedy requires further studies on its mechanisms of action

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Synthesis and Evaluation of Novel <i>S</i>-alkyl Phthalimide- and <i>S</i>-benzyl-oxadiazole-quinoline Hybrids as Inhibitors of Monoamine Oxidase and Acetylcholinesterase

    No full text
    New S-alkyl phthalimide 5a–f and S-benzyl 6a–d analogs of 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol (4) were prepared by reacting 4 with N-bromoalkylphthalimide and CF3-substituted benzyl bromides in excellent yields. Spectroscopic techniques were employed to elucidate the structures of the synthesized molecules. The inhibition activity of newly synthesized molecules toward MAO-A, MAO-B, and AChE enzymes, was also assessed. All these compounds showed activity in the submicromolar range against all enzymes. Compounds 5a and 5f were found to be the most potent compounds against MAO-A (IC50 = 0.91 ± 0.15 nM) and MAO-B (IC50 = 0.84 ± 0.06 nM), while compound 5c showed the most efficient acetylcholinesterase inhibition (IC50 = 1.02± 0.65 μM). Docking predictions disclosed the docking poses of the synthesized molecules with all enzymes and demonstrated the outstanding potency of compounds 5a, 5f, and 5c (docking scores = −11.6, −15.3, and −14.0 kcal/mol against MAO-A, MAO-B, and AChE, respectively). These newly synthesized analogs act as up-and-coming candidates for the creation of safer curative use against Alzheimer’s illness

    Exploration of newly synthesized azo-thiohydantoins as the potential alkaline phosphatase inhibitors via advanced biochemical characterization and molecular modeling approaches

    No full text
    Abstract In the current study, Azo-Thiohydantoins derivatives were synthesized and characterized by using various spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, elemental and HRMS analysis. The compounds were evaluated for alkaline phosphatase activity and it was observed that among all the synthesized compounds, derivative 7e exhibited substantial inhibitory activity (IC50 = 0.308 ± 0.065 µM), surpassing the standard inhibitor (L–Phenyl alanine, IC50 = 80.2 ± 1.1 µM). Along with this, these derivatives were comprehensively examined regarding the electronic properties and reactivity of the synthesized compounds using Density Functional Theory (DFT) calculations, where the results were found very promising and the synthesized compound were found stable. After that, SwissADME evaluations highlighted compounds for their favorable physicochemical properties, including solubility and drug-likeness. Molecular docking exhibited the strong binding affinities of 7f and 7e derivatives with intestinal alkaline phosphatase (IAP), further supported by Molecular Dynamics (MD) simulations. This comprehensive integration of experimental and computational approaches sheds the light on the potential therapeutic applications of the synthesized compounds. By providing a detailed investigation of these aspects, this research opens the avenues for the development of novel pharmacologically active compounds with diverse applications

    Synthesis, DFT and molecular docking of novel (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide as elastase inhibitor

    No full text
    Abstract A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P − 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, β = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C–H···N and C–H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R2 2(14) and R2 2(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities

    Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7 : A Novel Target for the Treatment of Cancer

    No full text
    NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3 inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7 leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer, non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a promising target for drug development against various cancer malignancies. The combination of drug repurposing and structure-based virtual screening of large libraries of compounds has dramatically improved the development of anticancer drugs. The current study focused on the virtual screening of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent binding energy of -42.67 kJ/mol, better than Dabrafenib (-33.89 kJ/mol). Selected drug candidates showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability of protein-ligand complexes, molecular dynamic simulations were performed, providing insight into the molecular interactions. The NEK7-Dabrafenib complex showed stability throughout the simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates were predicted using deep learning models. Deep learning models predicted the binding affinity of compound 762 best among all derivatives, which supports the findings of virtual screening. These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is recommended to explore the inhibitory potential of identified hits compounds through in-vitro and in-vivo approaches.Funding Agencies|King Saud University, Riyadh Saudi Arabia [RSP-2021/357]</p

    N-Adamantanyl-2-(2-(phenyl)hydrazone)-3-oxobutanamides endowed with dual inhibitors of urease and α-glucosidase: Design, synthesis, and computational studies

    No full text
    The conventional approach of drug development, which focused on inhibiting a single target, has been superseded by a more advanced strategy known as multi-target design. In this study, we describe the synthesis of new N-adamantyl-2-(2-(phenyl)hydrazone)-3-oxobutanamide (6a-k). These compounds were designed with the intention of serving as prospective drug like candidates that can target both alpha glucosidase and urease enzymes. For this purpose, both in-vitro and in-silico investigations were performed after synthesis and characterization. The density functional theory calculations were employed to calculate optimized geometries, global reactivity descriptors and frontier molecular orbital (FMO) analysis. All compounds were found reactive and compounds 6b, 6c, 6d and 6e were found the most stable. The synthesized compounds were also tested for their ability to inhibit the enzyme activities of urease and α-glucosidase. The compound 6c exhibited strong inhibition of urease enzyme, with IC50 value of 13.10 ± 0.55 µM, in comparison to the IC50 value of the standard inhibitor thiourea i.e., 16.4 ± 1.02 µM. In addition to this, compounds 6d and 6e demonstrated a significant α-glucosidase inhibition with IC50 values of 17.16 ± 0.91 µM but found less potent as compared to the standard inhibitor Acarbose, i.e. 9.80 ± 0.20 μM. The structure–activity relationship (SAR) was established and the in-vitro results were further supported by the molecular docking investigations and molecular dynamic simulation studies. The in-vitro and in-silico results demonstrated a strong correlation in assessing the drug-like characteristics of all synthesized compounds (6a-k). The in silico investigation confirmed the findings in the search for inhibitors against the listed enzymes by elucidating the binding relationship between most of the active compounds and the active site of urease and α-glucosidase

    Design, Synthesis, Kinetic Analysis and Pharmacophore-Directed Discovery of 3-Ethylaniline Hybrid Imino-Thiazolidinone as Potential Inhibitor of Carbonic Anhydrase II: An Emerging Biological Target for Treatment of Cancer

    No full text
    Carbonic anhydrases (CA), having Zn2+ metal atoms, are responsible for the catalysis of CO2 and water to bicarbonate and protons. Any abnormality in the functioning of these enzymes may lead to morbidities such as glaucoma and different types of cancers including brain, renal and pancreatic carcinomas. To cope with the lack of presence of a promising therapeutic agent against these cancers, searching for an efficient and suitable carbonic anhydrase inhibitor is crucial. In the current study, ten novel 3-ethylaniline hybrid imino-thiazolidinones were synthesized and characterized by FTIR, NMR (1H, 13C), and mass spectrometry. Synthesis was carried out by diethyl but-2-ynedioate cyclization and different acyl thiourea substitutions of 3-ethyl amine. The CA (II) enzyme inhibition profile for all synthesized derivatives was determined. It was observed that compound 6e demonstrated highest inhibition of CA-II with an IC50 value of 1.545 ± 0.016 µM. In order to explore the pharmacophoric properties and develop structure activity relationship, in silico screening was performed. In silico investigations included density functional theory (DFT) studies, pharmacophore-guided model development, molecular docking, molecular dynamic (MD) simulations, and prediction of drug likeness scores. DFT investigations provided insight into the electronic characteristics of compounds, while molecular docking determined the binding orientation of derivatives within the CA-II active site. Compounds 6a, 6e, and 6g had a reactive profile and generated stable protein-ligand interactions with respective docking scores of −6.12, −6.99, and −6.76 kcal/mol. MD simulations were used to evaluate the stability of the top-ranked complex. In addition, pharmacophore-guided modeling demonstrated that compound 6e produced the best pharmacophore model (HHAAARR) compared to standard brinzolamide. In vitro and in silico investigations anticipated that compound 6e would be an inhibitor of carbonic anhydrase II with high efficacy. Compound 6e may serve as a potential lead for future synthesis that can be investigated at the molecular level, and additional in vivo studies are strongly encouraged
    corecore