219 research outputs found

    Disruption of Ripple-Associated Hippocampal Activity During Rest Impairs Spatial Learning in the Rat

    Get PDF
    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a 1-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning.Institute of Physical and Chemical Research (Japan)National Institutes of Health (U.S.)Human Frontier Science Program (Grant Number: RO1 MH061976

    Rapid improvement of cognitive maps in the awake state

    Get PDF
    Post-navigation awake quiescence, relative to task engagement, benefits the accuracy of a new “cognitive map”. This effect is hypothesized to reflect awake quiescence, like sleep, being conducive to the consolidation and integration of new spatial memories. Sleep has been shown to improve cognitive map accuracy over time. It remained unknown whether awake quiescence can induce similar time-related improvements in new cognitive maps, or whether it simply counteracts their decay. We examined this question via two experiments. In Experiment 1, using an established cognitive mapping paradigm, we reveal that map accuracy for a virtual town was significantly better in people whose memory was probed after 10 min of post-navigation awake quiescence or ongoing cognitive engagement, relative to those whose memory was probed shortly after initial navigation. In Experiment 2, using a newly developed cognitive mapping task that involved a more complex and real-life virtual town, we again found that map accuracy was superior in those whose memory was probed after 10 min of awake quiescence than those who were tested soon after navigation. These findings indicate that actual improvements in human memories are not restricted to sleep. Thus, contrary to conventional wisdom and theories, the passage of (day)time need not always result in forgetting

    Rest Boosts the Long-term Retention of Spatial Associative and Temporal Order Information

    Get PDF
    People retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10‐min rest and the other by a 10‐min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark‐direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long‐term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term

    Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus

    Get PDF
    Background: Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80-250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH). Methods: We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH. Results: Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only. Conclusion: Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation

    Slow wave sleep and accelerated forgetting

    Get PDF
    We investigated whether the benefit of slow wave sleep (SWS) for memory consolidation typically observed in healthy individuals is disrupted in people with accelerated long-term forgetting (ALF) due to epilepsy. SWS is thought to play an active role in declarative memory in healthy individuals and, furthermore, electrographic epileptiform activity is often more prevalent during SWS than during wakefulness or other sleep stages. We studied the relationship between SWS and the benefit of sleep for memory retention using a word-pair associates task. In both the ALF and the healthy control groups, sleep conferred a memory benefit. However, the relationship between the amount of SWS and sleep-related memory benefits differed significantly between the groups. In healthy participants, the amount of SWS correlated positively with sleep-related memory benefits. In stark contrast, the more SWS, the smaller the sleep-related memory benefit in the ALF group. Therefore, contrary to its role in healthy people, SWS-associated brain activity appears to be deleterious for memory in patients with ALF

    Comparable rest-related promotion of spatial memory consolidation in younger and older adults

    Get PDF
    Flexible spatial navigation depends on cognitive mapping, a function that declines with increasing age. In young adults, a brief period of postnavigation rest promotes the consolidation and integration of spatial memories into accurate cognitive maps. We examined (1) whether rest promotes spatial memory consolidation and integration in older adults; and (2) whether the magnitude of the rest benefit changes with increasing age. Young and older adults learned a route through a virtual environment, followed by a 10-minute delay comprising either wakeful rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to landmarks from different locations. Pointing accuracy was lower in the older than younger adults. However, there was a comparable rest-related enhancement in pointing accuracy in the 2 age groups. Together our findings suggest that (1) the age-related decline in cognitive mapping cannot be explained by increased consolidation interference in older adults; and (2) as we grow older, rest continues to support the consolidation and integration of spatial memories

    Organization of sensory feature selectivity in the whisker system

    Get PDF
    Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion

    Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Get PDF
    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli

    Flexible theta sequence compression mediated via phase precessing interneurons

    Get PDF
    Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal's lifespan
    corecore