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Abstract 

Post-navigation awake quiescence, relative to task engagement, benefits the accuracy of a new 
‘cognitive map’. This effect is hypothesised to reflect awake quiescence, like sleep, being conducive to 
the consolidation and integration of new spatial memories. Sleep has been shown to improve cognitive 
map accuracy over time. It remained unknown whether awake quiescence can induce similar time-
related improvements in new cognitive maps, or whether it simply counteracts their decay. We 
examined this question via two experiments. In Experiment 1, using an established cognitive mapping 
paradigm, we reveal that map accuracy for a virtual town was significantly better in people whose 
memory was probed after 10mins of post-navigation awake quiescence or ongoing cognitive 
engagement, relative to those whose memory was probed shortly after initial navigation. In 
Experiment 2, using a newly-developed cognitive mapping task that involved a more complex and real-
life virtual town, we again found that map accuracy was superior in those whose memory was probed 
after 10mins of awake quiescence than those who were tested soon after navigation. These findings 
indicate that actual improvements in human memories are not restricted to sleep. Thus, contrary to 
conventional wisdom and theories, the passage of (day)time need not always result in forgetting. 
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The ability to navigate flexibly depends on the formation of accurate cognitive maps – flexible mental 
representations of the spatial relationships between objects in the world that can be accessed from 
any perspective and vantage point. These observer-independent mental representations are formed 
via the integration of new memories pertaining to a novel spatial experience (for review see: Wolbers 
and Wiener, 2014; Morton et al., 2017). In our recent human behavioural work we revealed that, when 
probed at a delayed stage, a cognitive map of a navigated virtual environment is more accurate if 
participants experience awake quiescence for several minutes after being trained on a novel route 
than if they engage in an unrelated perceptual task in the minutes after route training (Craig et al., 
2016a; b). We hypothesised that this effect was because awake quiescence is conducive to the 
consolidation and integration of new spatial memories into an accurate cognitive map, possibly by 
supporting neural reactivation (see below) (Craig et al., 2016a).  

Neural reactivation of novel experiences has been demonstrated in rodents and humans (e.g. Peigneux 
et al., 2004; Karlsson and Frank, 2009; Carr et al., 2011; Staresina et al., 2013). In rodents, place and 
grid cells in the hippocampus and entorhinal cortex, which were first activated during initial navigation, 
are automatically reactivated in the minutes that follow the navigation experience, especially when 
these minutes comprise sleep or awake quiescence (Buzsáki, 1989; Wilson and McNaughton, 1994; 
Hasselmo, 1999; Karlsson and Frank, 2009; Gupta et al., 2010; Carr et al., 2011; Mednick et al., 2011; 
Ólafsdóttir et al., 2016). This neural reactivation, which is well suited to induce synaptic plasticity 
(Buzsáki, 1986, 1989), has been shown to be critical for the consolidation and integration of new spatial 
memories (e.g. Buzsáki, 1989; Gupta et al., 2010), and cognitive map formation (Gupta et al., 2010). 
The role of neural reactivation in spatial memory is further evidenced by (i) a positive correlation 
between the degree of reactivation and subsequent spatial memory performance in humans and 
rodents (Peigneux et al., 2004; Karlsson and Frank, 2009; Carr et al., 2011; Jadhav et al., 2012; Deuker 
et al., 2013), and (ii) poor subsequent spatial memory performance in rodents following 
electrophysiological disruption of neural reactivation (Ego-Stengel and Wilson, 2010; Jadhav et al., 
2012). Moreover, given that neural reactivation can involve the generation of novel, never directly 
travelled, trajectories (Gupta et al., 2010), it is likely to aid the active development of cognitive maps 
over time. 

In keeping with this prediction, research in humans shows that cognitive map accuracy improves over 
time during an extended period of sleep, relative to an equivalent period of wakefulness filled with 
engaging cognitive tasks (Ferrara et al., 2008; Coutanche et al., 2013; Nguyen et al., 2013). This effect 
is believed to reflect the consolidation and integration of spatial memories into a new cognitive map 
during post-navigation sleep, resulting in time-related improvement in map precision/completeness.  

Importantly, it remained unknown whether the recently reported benefit of post-navigation awake 
quiescence (Craig et al., 2016a; b) reflects (i) consolidation-related improvement in cognitive map 
accuracy over time, as is the case with post-navigation sleep, or (ii) reduced decay of a new cognitive 
map over time. Research in humans suggests that awake quiescence benefits verbal memories by 
reducing their decay (Dewar et al., 2012, 2014; Craig et al., 2014) rather than by inducing 
improvements, and this is assumed to be the case for sleep and awake quiescence effects in declarative 
memory overall (Mednick et al., 2011). To the best of our knowledge, no research, in humans or 
rodents, has investigated whether awake quiescence improves cognitive map accuracy over time. If, 
like sleep, awake quiescence induces actual consolidation-related improvements in the precision of a 
cognitive map, then map accuracy should be superior following a period of post-navigation quiescence 
than shortly after navigation. If, on the other hand, awake quiescence reduces/counteracts the decay 
of a cognitive map over time, then map accuracy should be poorer following the 10-minute delay than 
shortly after navigation, but less so after quiescence than an engaging task. 

We conducted two experiments to examine whether post-navigation awake quiescence improves 
cognitive map accuracy over time or reduces their decay. In Experiment 1, we used an established 
cognitive mapping paradigm (Craig et al., 2016a; b) to probe participants’ memory (i) shortly after 



Rapid improvement of cognitive maps  3 

navigating a virtual town or (ii) after a 10-minute delay of awake quiescence or task engagement. 
Experiment 2 was conducted to establish whether the key finding of Experiment 1 could be replicated 
when using a newly developed cognitive mapping paradigm (see later). 

Sixty healthy young adults (mean age = 20.83 years, SD = 2.41; 33F:27M) were recruited as participants 
in Experiment 1. All participants were trained to criterion on a route through a virtual town 
environment before experiencing one of three delay conditions: (i) no delay (participants moved 
directly to the subsequent testing phase) (N=20), (ii) 10 minutes of an engaging perceptual task (a spot-
the-difference game) (N=20), or (iii) 10 minutes of awake quiescence (quiet resting) (N=20). They then 
performed a cognitive map test (for detailed Methods see: Craig et al., 2016a), which required 
participants to point in the direction of various landmarks from different locations encountered on the 
trained route. Superior pointing accuracy (i.e. a smaller angle of error) in this test should reflect a more 
accurate cognitive map of the environment. Post-study, all participants completed the Santa Barbara 
Sense of Direction (SBSOD) questionnaire, a reliable self-reported measure of spatial ability (Hegarty 
et al., 2002), as well as a detailed questionnaire which probed whether participants actively thought 
about and/or rehearsed the learned route during quiescence, and their experience using computer 
and virtual reality games/equipment (Moffat et al., 2001). Figure 1 provides an overview of the 
experimental procedure. Ethical approval was granted by The University of Edinburgh and Heriot-Watt 
University, where this research was conducted. The participant data for the 10-minute quiescence and 
10-minute task groups came from our recently published work (Craig et al., 2016a). Given that we 
previously reported a significant difference in pointing error scores between these two conditions 
(Craig et al., 2016a), where those who experienced awake quiescence demonstrated better pointing 
accuracy than those who experienced task condition, the key comparisons in the current study were: 
(i) no delay vs. 10min awake quiescence, and (ii) no delay vs. 10min task. This allowed us to examine 
whether (a) cognitive map accuracy improves over time during awake quiescence, and (b) such 
improvement is specific to awake quiescence or observed also during task engagement (albeit to a 
lesser extent). 

 

 

Figure 1. Experiment 1 procedure: Participants (i) learned a route (see blue line) through a virtual town 
containing nine distinctive landmarks (L1 = Gas station, L2 = Bank, L3 = Convenience store, L4 = 
Restaurant, L5 = Hotel, L6 = Pet store, L7 = Pub, L8 = Church, L9 = Hardware store), and (ii) underwent 
one of three delay conditions (A: no delay (N=20), B: 10 minutes of an engaging spot-the-difference 
game (N=20), C: 10 minutes of awake quiescence (N=20)), before (iii) performing a cognitive map test 
(Craig et al., 2016a). In this 16-trial test, participants were presented a landmark from the environment 
on screen and asked to rotate to point towards a second (target) landmark. We calculated, for each 
trial, the absolute deviation (in degrees) between the actual direction of the target landmark and the 
participant’s estimated direction, where superior pointing accuracy (i.e. small angle of error) should 
reflect a more accurate cognitive map. Participant and group means were computed subsequently. 
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Table 1. Experiment 1: Background information, mean number of learning cycles required to learn the route, and mean time to respond 
(seconds) in the cognitive map test as a function of delay condition group. Standard deviations are shown in parentheses. 

Delay group Gender Age Years in 
education 

Computer 
experience 

SBSOD 
questionnaire 

Learning 
cycles 

Cognitive map time 
to respond (s) 

No delay (N=20) 8M:12F 21.70 (3.15) 15.85 (1.46) 12.20 (3.02) 3.81 (1.05) 2.00 (0.00) 15.72 (6.27) 

10min quiescence (N=20) 9M:11F 20.20 (1.85) 16.05 (1.76) 10.80 (2.82) 3.54 (0.71) 2.05 (0.22) 16.94 (4.17) 

10min task (N=20) 10M:10F 20.75 (1.86) 16.30 (1.66) 11.60 (3.08) 3.45 (0.86) 2.00 (0.00) 15.48 (3.66) 

 

Groups were matched in participants’ background, including gender ratio, age, years in education, self-
reported computer experience, self-reported spatial ability (SBSOD), and number of learning cycles 
required to learn the route (see Table 1; no delay vs. 10min quiescence: all p > .075; no delay vs. 10min 
task: all p > .231). Groups were also matched in the time that it took participants to respond in the 
cognitive map test (no delay vs. 10min quiescence: F,38 = 14.778, P = .475; ηρ² = .014; no delay vs. 
10min task: F1,38 = 0.027, P = .871; ηρ² = .001).  

We did, however, find group differences in the accuracy of participants’ cognitive map test responses. 
Critically, comparison of mean pointing error scores revealed a significant difference between the no 
delay and 10min quiescence groups (F1,38 = 17.974, P < .001; ηρ² = .321, Figure 2a) and the no delay 
and 10min task groups (F1,38 = 4.810, P = .034; ηρ² = .112, Figure 2b). In both cases the significant 
difference was because those who experienced a 10-minute delay (of awake quiescence or cognitive 
engagement) between learning and testing demonstrated significantly superior pointing accuracy than 
those who performed the cognitive map test shortly after route learning (no delay group).  

 

 

Figure 2. Experiment 1 results: Box-whisker plot showing pointing error scores (degrees) in the 
cognitive map test when performed after (a) no delay and 10 minutes of awake quiescence (both 
N=20), and (b) no delay and 10 minutes of a perceptual task (both N=20). The solid centre line in each 
box shows the median pointing error score for that group. The upper and lower boundaries of boxes 
represent the interquartile ranges. Box whiskers show the upper and lower quartiles of pointing error 
scores. The dashed centre line in each box shows the mean pointing error score for that group. (c) 
Trial-by-trial distribution of mean pointing error scores for the no delay (solid line), 10min task (dashed 
line), and 10min quiescence (dotted line) groups. The presented and target landmarks are noted for 
each trial, e.g. Trial 1 = L6-L2, which corresponds to the presentation of landmark 2 (Bank) and 
landmark 6 (Pet store) being the target landmark. 
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Figure 2c shows trial-by-trial pointing error scores in the cognitive map test as a function of group. The 
data indicate that the group differences between the no delay and 10min quiescence groups, and no 
delay and task groups, were due to a general superiority in the overall precision/completeness of 
participants’ cognitive maps in the 10min quiescence and 10min task groups, opposed to (e.g.) better 
associations of a specific subset of landmarks to their correct locations. Given that pointing was 
relatively accurate overall (all mean angles of error were less than 51 degrees in the three groups), the 
data further suggest that (i) participants did not find any specific trials especially demanding, and (ii) 
guessing was not a major factor as participants had at least a broad idea of target landmark locations. 

As in related work (Dewar et al., 2014; Craig et al., 2015, 2016a; b), the accuracy benefit of awake 
quiescence, relative to no delay, could not be explained by mnemonic strategies (e.g. active rehearsal 
of the trained route) during the 10-minute quiescence delay because the effect remained when 
excluding participants (N = 6/20, 30.00%) from this group who reported such strategies (F1,33 = 13.770, 
P = .001; ηρ² = .294). It is also unlikely that participants performed poorer in the no delay group due to 
a fatigue associated with recent route learning as: (i) participants did not find this task especially 
demanding (as evidenced by the low number of learning cycles required to learn the route), (ii) it was 
not excessive in duration (typically 10-15mins), and (iii) if cognitive fatigue was responsible for poorer 
performance in the no delay group, pointing accuracy should have been further reduced following 10 
minutes of additional cognitive engagement (task group), which was not the case. 

Importantly, as noted earlier, some of the reported data (10min quiescence group and 10min task 
group) came from an already published study (Craig et al., 2016a) and the new data for the no delay 
group were collected at a different time point and location. Despite groups being matched in 
participants’ background, it is possible that these factors influenced our findings.  Moreover, the virtual 
town environment used in Experiment 1 was relatively basic, and therefore it remained unknown 
whether the effects observed would replicate in more real life-like, complex environments. To this 
end, Experiment 2 was conducted to examine whether the time-dependent improvement of post-
navigation awake quiescence in cognitive map accuracy was replicable in a new set of participants and 
within a more complex real life-like environment.  

Experiment 2 used the same general procedure as Experiment 1 (see Figure 1), thus, only key 
methodological details and changes are noted below. Fifty new healthy young adults (mean age = 
21.98 years, SD = 2.79; 13F:35M) were trained to criterion on a route through a new, more complex, 
virtual town environment (see Figure 3a). Training comprised learning cycles. In the first learning cycle, 
participants completed two learning trials, where the participant travelled the route as a ‘passenger’ 
in a car, and one probe trial, where memory for the direction turned at each junction was probed. If 
participants made one or more errors in this first probe trial, they completed an undefined number of 
further learning cycles, each of which involved one learning trial and one probe trial, until zero errors 
were made in a probe trial. Participants then experienced one of two delay conditions: (i) no delay 
(participants moved directly to the subsequent testing phase) (N=25) or (ii) 10 minutes of awake 
quiescence (quiet resting) (N=25), which they were randomly assigned to pre-experimentally. They 
then performed a cognitive map pointing test, where they were required to point from each landmark 
experienced along the trained route (N = 5) to all other landmarks (total trials = 20). Trials were 
presented in a random order, and the same random order was used across all participants. Finally, 
participants completed the Santa Barbara Sense of Direction (SBSOD) questionnaire and a detailed 
questionnaire (see Experiment 1).  

Unlike Experiment 1, which used a relatively basic virtual town environment and a route that 
comprised equidistant junctions (decision points), linear tracks and 90 degree turns, the environment 
used in Experiment 2 comprised a more real life-like, rich and detailed virtual town and a more complex 
route that included sweeping turns and varied distances between junctions (see Figure 3). All 
experimental procedures for Experiment 2 were cleared by the ethics committee of Heriot-Watt 
University, UK, where this research was conducted. Data from two participants were lost due to one 
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individual performing more than two standard deviations above (i.e. poorer) than the group mean (no 
delay group) and a second individual not abiding by task instructions (10min quiescence group). 
Therefore, Table 2 reports data from a sample of N = 24 per group (total N = 48) and the analyses 
reported in the subsequent section were conducted on this sample. 

 

Table 2. Experiment 2: Background information, mean number of learning cycles required to learn the route, and mean time to respond 
(seconds) in the cognitive map test as a function of delay condition group. Standard deviations are shown in parentheses. 

Delay group Gender Age Years in 
education 

Computer 
experience 

SBSOD 
questionnaire 

Learning 
cycles 

Cognitive map time 
to respond (s) 

No delay (N=24) 17M:7F 22.54 (2.62) 16.33 (2.18) 13.83 (4.65) 4.08 (1.35) 1.75 (0.79) 17.93 (9.70) 

10min quiescence (N=24) 18M:6F 21.42 (2.90) 16.25 (2.55) 13.59 (3.86) 3.73 (1.13) 1.50 (0.59) 19.04 (8.43) 

 

 

 

Figure 3. Experiment 2: (a) Bird’s eye map of the virtual town and two screenshots from the learned 
route, showing landmark 4 (Church) and landmark 5 (Restaurant). The learned route is shown via the 
red arrows between the 'START' and 'END' labels. Yellow circles show the locations of salient landmark 
buildings (L1 = Hotel, L2 = Convenience store, L3 = Gas station, L4 = Church, L5 = Restaurant) that were 
used in the pointing task. Black shapes represent other, generic town-like buildings (e.g. apartment 
blocks) and green shapes represent areas of green space (i.e. grass and trees) (b) Box-whisker plot 
showing pointing error scores (degrees) in the cognitive map test when performed after no delay and 
after 10 minutes of awake quiescence (both N=24). The solid centre line in each box shows the median 
pointing error score for that group. The upper and lower boundaries of boxes represent the 
interquartile ranges. Box whiskers show the upper and lower quartiles of pointing error scores. The 
dashed centre line in each box shows the mean pointing error score for that group. (c) Trial-by-trial 
distribution of mean pointing error scores for the no delay (solid line) and 10min quiescence (dotted 
line) groups. The presented and target landmarks are noted for each trial, e.g. Trial 1 = L1-L2, which 
corresponds to the presentation of landmark 1 (Hotel) and landmark 2 (Convenience store) being the 
target landmark. 
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Groups were matched in participants’ background, including gender ratio, age, years in education, self-
reported computer experience, self-reported spatial ability (SBSOD), and number of learning cycles 
required to learn the route (see Table 2; all p > .164). Groups were also matched in the time to respond 
in the cognitive map test (see Table 2; F1,46 = 0.179, p = .674, ηρ² = .004). However, as in Experiment 1, 
we found a significant between-group difference in the accuracy of cognitive map test responses (F1,46 
= 6.494, P = .014, ηρ² = .124). Those who experienced a 10-minute delay of awake quiescence between 
learning and testing demonstrated significantly more accurate pointing than those who experienced 
no delay between learning and testing (Figure 3b). As in Experiment 1, the data indicate that better 
performance in the 10min quiescence group over the no delay group was due to a general superiority 
in the overall precision/completeness of participants’ cognitive maps (figure 3c). This accuracy benefit 
of awake quiescence could not be explained by mnemonic strategies during the 10-minute awake 
quiescence delay because the effect remained when excluding participants (N = 7/24, 29.17%) from 
this group who reported such strategies (F1,39 = 5.015, P = .031; ηρ² = .114).  

Bayesian analyses reinforced the findings of Experiment 2. Specifically, a Bayesian one-sample t-test 
provided little/no (BF10 = less than 3) evidence (Jeffreys, 1961) for the alternative hypothesis that 
there was a between-group difference in the number of learning cycles required to learn the route 
(BF10 = 0.535). Indeed, there was more evidence in favour of the null hypothesis that there was no 
between-group difference in the number of required learning cycles (BF01 = 1.868), though we 
acknowledge that this evidence was not strong. In addition, a one-sample t-test provided some (BF10 
= more than 3) evidence (Jeffreys, 1961) for the alternative hypothesis that there was a difference in 
pointing error scores between groups (BF10 = 3.705, BF01 = 0.270).  

Furthermore, when removing those in the 10min quiescence group who reported rehearsal (N=7), as 
above, there was more evidence in favour of the null than alternative hypothesis for possible 
differences in the number of learning cycles (BF01 = 2.893, BF10 = 0.335), suggesting that groups were 
matched in route learning. There was also more evidence in favour of a between-group difference in 
pointing error scores (BF10 = 2.131) than for the null (BF01 = 0.469), though we acknowledge that this 
evidence, from a smaller N, is not as strong as when those who rehearsed were included. These 
findings reinforce that groups were well matched during route learning and that between-group 
differences were observed during testing. 

Taken together, our data suggest that cognitive map accuracy rapidly improves over time (within 
minutes) in the awake state, and this appears to be especially true during post-navigation quiescence. 
In Experiment 1, participants who completed a cognitive map test for a recently-navigated virtual town 
after experiencing either (i) 10 minutes of awake quiescence or (ii) 10 minutes of ongoing cognitive 
engagement demonstrated significantly better pointing accuracy, relative to those who performed the 
cognitive map test shortly after navigating the virtual town. The difference following quiescence was 
more pronounced than that following ongoing cognitive engagement. In Experiment 2, we replicated 
the benefit of a post-navigation delay comprising awake quiescence in a different participant sample, 
using a more complex, real life-like virtual town. It is noteworthy that the benefit of awake quiescence, 
relative to no delay, was found in two different tasks of varying complexity and ecological validity, in 
studies conducted in different populations of young adults at different universities, and by different 
experimenters. Our findings cannot be explained by differences in participants’ background or 
mnemonic strategies (e.g. active rehearsal) and are unlikely to be due to differences in cognitive 
fatigue. However, they can be explained via a consolidation account. We propose that map accuracy 
was superior in those who experienced a delay between learning and testing because of the 
consolidation and integration of new spatial memories over time, resulting in a time-related 
improvement in the overall precision/completeness of a cognitive map for the navigated environment.  

Importantly, superior map accuracy after a wakeful delay, and especially awake quiescence, 
demonstrates that, at least in the case of new cognitive maps, awake quiescence does not merely 
reduce decay, and that actual improvements in (at least some types of) human memories are not 
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restricted to sleep. This resonates with (i) research in rodents demonstrating consolidation-related 
reactivation of place and grid cells in the hippocampus-entorhinal cortex during post-navigation awake 
quiescence and sleep (Karlsson and Frank, 2009; Carr et al., 2011; Ólafsdóttir et al., 2016), and (ii) 
research in humans demonstrating superior cognitive map accuracy following post-navigation sleep 
(Ferrara et al., 2008; Coutanche et al., 2013; Nguyen et al., 2013). It is possible that the benefit of time 
in the current study was because of neural reactivation in the wakeful minutes that immediately 
followed navigation. In addition, other research in rodents demonstrates the upregulation of genes 
that are strongly associated with very early neural plasticity, consolidation and the formation of 
cognitive maps, in the hippocampus and entorhinal cortex, shortly after navigation (Feldman et al., 
2010; Barry and Commins, 2017). This further suggests that the immediate time that follows navigation 
is critical for the early cellular-level transformation of new memory representations and may at least 
partially account for our findings. 

Interestingly, the findings of Experiment 1 indicate that consolidation-related improvements can occur 
during ongoing cognitive engagement because, relative to experiencing no delay, cognitive map 
accuracy was significantly better even when people performed a 10-minute spot-the-difference game 
after initial navigation. We propose that the consolidation and integration of new spatial memories 
can occur during ongoing task engagement, but might be less efficient than during awake quiescence, 
possibly due to additional demands on the memory system/hippocampal network. Indeed, the spot-
the-difference game used in our task group is likely to have resulted in novel memory encoding, and 
recent findings demonstrate that the number of fixations made during the visual exploration of novel 
stimuli - as in the spot the difference game - positively predicts hippocampal activity (Liu et al., 2017). 
The hypothesised increased demand/co-current activity during task engagement may have a 
quantitative and/or qualitative impact on the coordinated reactivation of place and grid cells, resulting 
in a diminished improvement in cognitive map accuracy over time. Furthermore, increased demand 
on the memory system over a much longer period of time (~8 hours) may explain, to some degree, 
why previous studies, which have shown a sleep-related improvement in spatial memory, have failed 
to show an improvement in spatial memory over time when participants are wakefully engaged in 
ongoing tasks (Ferrara et al., 2008; Coutanche et al., 2013; Nguyen et al., 2013). Indeed, consolidation 
has been proposed to be an opportunistic process that occurs especially during periods of reduced 
sensory input and cognitive engagement (i.e. sleep and awake quiescence) (Wilson and McNaughton, 
1994; Hasselmo, 1999; Wixted, 2004; Mednick et al., 2011). Our findings support this hypothesis and 
the view that consolidation benefits from states of reduced sensory processing more generally, rather 
than being restricted to sleep (Wilson and McNaughton, 1994; Hasselmo, 1999; Wixted, 2004; Mednick 
et al., 2011). We acknowledge that further work is required to establish the specific neural mechanisms 
underlying the rapid development of cognitive maps and the memory benefit of post-navigation awake 
quiescence. 

Can the observed time-related improvement in memory be reconciled with decay and interference 
theories of forgetting? Our findings indicate that new declarative memories might not only be 
forgotten over time via decay and/or interference. Instead, they suggest that actual improvements in 
(at least some types of) new memories are possible, at least over the shorter term, i.e. in the wakeful 
minutes that immediately follow encoding. However, we acknowledge that the forgetting of a newly 
formed cognitive map is likely to occur over a longer period (e.g. days to weeks) filled with potentially 
interfering activities, though it is worth noting that recent work has shown no reliable decay of 
allocentric pointing scores over the course of one week in a similar cognitive mapping paradigm 
(Bennett and Giudice, 2017). Thus, we do not suggest that our findings are at odds with decay and 
interference theories of forgetting. In contrast, we suggest that they potentially offer new insights into 
the early processing of new memories in forming a cognitive map. Further work is needed to 
characterise the timeline of cognitive map development and forgetting in the minutes to weeks that 
follow initial encoding.   

In summary, our results provide behavioural evidence of the rapid consolidation-related improvement 
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of cognitive map accuracy over time in the awake state. Furthermore, they suggest that contrary to 
conventional wisdom and theories, actual improvements in (at least some types of) memories are not 
restricted to sleep, and the passage of (day)time need not always result in forgetting, at least over the 
shorter term. 
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