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Highlights: 

 Rest enhances spatial memory consolidation/integration in older adults 

 Rest-related enhancement in consolidation is comparable in young and older adults 

 Susceptibility to consolidation interference is not increased in older adults 
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Abstract 

Flexible spatial navigation depends on cognitive mapping, a function that declines with 

increasing age. In young adults, a brief period of post-navigation rest promotes the 

consolidation/integration of spatial memories into accurate cognitive maps. We examined (1) 

whether rest promotes spatial memory consolidation/integration in older adults and (2) whether 

the magnitude of the rest benefit changes with increasing age. Young and older adults learned 

a route through a virtual environment, followed by a 10min delay comprising either wakeful 

rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to 

landmarks from different locations. Pointing accuracy was lower in the older than younger 

adults. However, there was a comparable rest-related enhancement in pointing accuracy in the 

two age groups. Together our findings suggest that (i) the age-related decline in cognit ive 

mapping cannot be explained by increased consolidation interference in older adults, and (ii) 

as we grow older rest continues to support the consolidation/integration of spatial memories.  

 

 

 

 

Key words: Spatial navigation, cognitive map, wakeful rest, memory consolidation, long- term 

memory, spatial memory. 
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1. Introduction 

We are often faced with challenges when navigating in the real world. For example, while 

driving home from work you may find that your usual route is blocked. In such a case you 

would be required to find an alternative route home, possibly via a path that you have never 

experienced directly, but that you know travels in the general direction of your destination. As 

we grow older our ability to navigate flexibly is reduced. In this paper we report a study that 

examines the cognitive basis of the age-related deficit in flexible navigation, and the extent to 

which wakeful rest after route learning can ease this deficit. 

In order to navigate flexibly we must acquire and store configural knowledge during initia l 

navigation of a spatial environment. Configural knowledge refers to the directions and 

distances between objects and locations in the spatial environment. When this knowledge is 

obtained during navigation, it can be integrated via the automatic formation (Ishikawa and 

Montello, 2006; Montello, 1998) of ‘cognitive maps’ (Tolman, 1948). A cognitive map is a 

flexible mental representation of a spatial environment that can be accessed from any 

perspective and vantage point (Wolbers and Hegarty, 2010). This mental representation does 

not represent a specific experience, but an overarching relational memory built via the 

integration of a number of memories pertaining to a spatial experience.  

The hippocampal-entorhinal circuit plays a critical role in supporting cognitive maps. 

Research in rodents demonstrates that during spatial navigation, hippocampal place cells and 

entorhinal grid cells fire, coding the animal’s location as it travels (for review, see Moser et al., 

2008; O’Keefe et al., 1998). Following navigation, place cell firing patterns are reactivated (i.e. 

replayed) in a forwards and reverse direction (Foster and Wilson, 2006). In addition, firing 

patterns relating to trajectories that were never directly experienced during navigation are 

observed, i.e. possible future routes are preplayed (Dragoi and Tonegawa, 2011; Gupta et al., 

2010). These patterns of neural reactivation, which occur especially during post-naviga t ion 
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periods of relative immobility and reduced sensory input (i.e. wakeful rest and sleep) (Davidson 

et al., 2009; Jackson et al., 2006; Karlsson and Frank, 2009), are hypothesised to support the 

consolidation of spatial memories for specific experiences (e.g. a travelled route) and their 

wider integration (e.g. into accurate cognitive maps) (Carr et al., 2011; Csicsvari and Dupret, 

2014; Gupta et al., 2010; Karlsson and Frank, 2009).  

The reactivation-consolidation hypothesis is supported by work in rodents demonstrat ing 

that (i) the disruption of neural reactivation impairs subsequent spatial memory (Ego-Stengel 

and Wilson, 2011; Girardeau et al., 2009), and (ii) the quantity of neural reactivation during 

post-learning rest positively predicts performance in subsequent spatial memory tests (Carr et 

al., 2011; Foster and Wilson, 2006). The latter finding resonates with human neuroimaging 

work which shows an association between the reactivation of stimulus-specific neural activity 

during post-learning rest and performance in a subsequent memory task (Staresina et al., 2013).  

Further human evidence for the reactivation-consolidation hypothesis comes from 

recent behavioural work in young adults. A short period of post-navigation rest promotes the 

consolidation and wider integration of memories into accurate cognitive maps (Craig et al., 

2016). This finding resonates with previous work demonstrating that rest promotes the 

consolidation of specific memories (e.g. lists of words and short stories) in young and older 

adults (Craig et al., 2015, 2014; Dewar et al., 2014, 2012a). It is hypothesised that post-learning 

rest promotes the consolidation of specific memories and the wider integration of memories by 

providing conditions of reduced sensory input (and associated encoding) that would otherwise 

interfere with consolidation-related processes such as neural reactivation (Dewar et al., 2014, 

2012a). 

However, it remained unknown whether the beneficial effect of post-navigation rest in 

the integration of spatial memories into accurate cognitive maps extends from young adults to 

older adults. This is important as older adults demonstrate an age-related decline in cognit ive 
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mapping ability (Iaria et al., 2009; Liu et al., 2011; Moffat and Resnick, 2002). Hitherto, this 

decline has been attributed mainly to age-related changes in the ability to encode and/or retrieve 

spatial memories (Iaria et al., 2009; Meulenbroek et al., 2004; Moffat, 2009; Rodgers et al., 

2012). Little consideration has been given to the possibility that age-related changes in 

consolidation could account, at least in part, for these cognitive mapping deficit in older adults. 

However, recent work in rodents has revealed that older rodents demonstrate impairments in 

hippocampal reactivation of recent spatial memories during post-navigation rest, i.e. reduced 

reactivation (Gerrard et al., 2008). Moreover, work in humans has shown that increasing age 

impairs memory consolidation (during sleep) in humans, although findings have been mixed 

(Harand et al., 2012; Spencer et al., 2007). 

If spatial memory consolidation/integration does decline with increasing age, then one 

possible mechanism is an increase in consolidation interference from ongoing sensory input 

and associated encoding in older adults. If this is the case, older adults should benefit more 

from post-learning rest than young adults. This hypothesis is supported by robust findings in 

patients with amnestic Mild Cognitive Impairment (aMCI) and Alzheimer’s disease (AD) . 

Relative to healthy older adults, these patients demonstrate a severe consolidation interference 

effect in tests of delayed verbal recall (e.g. wordlists and short stories), such that retention is 

profoundly impaired if learning is followed by cognitive tasks, e.g. a spot-the-difference game 

or a picture naming task (Alber et al., 2014; Dewar et al., 2012b, 2009). Importantly, their 

retention deficit can be reduced substantially if learning is followed by a short rest period 

(Alber et al., 2014; Dewar et al., 2012b, 2009). As a result, the rest-related memory benefit is 

much larger in aMCI and AD patients than in healthy older adults (Alber et al., 2014; Dewar 

et al., 2012b, 2009).  

It is also possible that ageing reduces memory consolidation/integration more 

generally, e.g. due to reduced quantity and/or quality of neural reactivation. Such a shortfall in 
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consolidation would be predicted to result in poorer overall spatial memory performance in 

older than young adults when probed at a delayed stage. Moreover, such a consolidation deficit 

could decrease the beneficial effect of rest, paralleling the accounts of a reduction in sleep-

related memory benefits in older adults (Harand et al., 2012).  

To date, no study has directly compared the magnitude of the rest effect in younger and 

older adults within the same paradigm. In the study reported here we examined if cognit ive 

mapping deficits in older adults can be accounted for, at least in part, by changes in the 

consolidation and integration of spatial memories. Specifically, we examined whether, and how 

much, post-navigation rest promotes the consolidation/integration of spatial memories into an 

accurate cognitive map in older adults as compared to young adults. To this end, we used an 

established virtual reality cognitive mapping paradigm that has been found to be sensitive to 

the effect of post-navigation cognitive activity (rest vs. perceptual task) in younger adults 

(Craig et al., 2016). 

 

2. Method 

Since our study used a modified version of already published methodology (Craig et al., 

2016) only core methodological details and relevant modifications are detailed below. 

 

2.2. Participants 

Twenty healthy young adults (11 males, 9 females; mean age = 26.25 years, SD = 2.75, 

age range: 21-33 years) and twenty healthy older adults (9 males, 11 females; mean age = 67.95 

years, SD = 3.95, age range: 61-74 years) were recruited as participants by the German Center 

for Neurodegenerative Diseases (DZNE), Magdeburg, where the study was conducted. Older 

adults did not have any known premorbid psychiatric or neurological disorders and performed 

within the normal range on the Mini-mental State Examination (mean score = 28.5, SD = 1.37) 
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(Folstein et al., 1975; Petersen et al., 1999). All participants had normal or corrected-to-normal 

vision and received compensation of €6.50 per hour for their time. 

 

2.3. Design 

A between-subjects design was employed with two factors: 10min delay condition 

(wakeful rest vs. perceptual task) and age group (young vs. older adults). The experiment 

comprised a learning phase, a delay phase, and a testing phase. The critical between-subjects 

manipulation occurred during the 10min delay phase, where participants either: (i) rested 

wakefully, or (ii) performed an unrelated perceptual task – a spot-the-difference game. During 

the subsequent testing phase, participants performed (i) a free recall test for landmarks from 

the virtual environment, and (ii) a cognitive map test assessing the accuracy of a newly formed 

cognitive map of the navigated virtual environment.  

 

2.4. Materials 

The virtual environment was a modified version of an existing environment (Craig et 

al., 2016; Harris and Wolbers, 2014). All landmarks within the virtual environment were 

common real-world buildings that would be found in a German town-like environment, e.g. a 

bakery (Bäckerei), a supermarket (Supermarkt) and a church (Kirche) (see Fig 1). The virtua l 

environment was presented to participants on a large curved (180 degrees) projector screen 

(height = 2.00m, width = 2.40m, depth = 1.25m; see Fig 1). Participants were seated in a central 

position where the screen curved around them. The curvature of the screen meant that 

participants’ field of view was mostly filled by the presented virtual environment, and thus 

provided a more immersive and ecological virtual navigation experience relative to flat-screen 

computer monitors often used in virtual reality spatial navigation studies. A computer gaming 

steering wheel was used to input responses during learning and testing. 



REST PROMOTES SPATIAL MEMORY CONSOLIDATION  8 
 

 

 

 

Fig 1. Top left: Illustration of the curved screen (bird’s eye view). Participants sat in a central 

position where their field of view was mostly filled by the presented virtual environment. The 

experimenter (the ‘driver’) sat to the left of the participant (the ‘passenger’). Top right: Bird’s 

eye map of the virtual environment. The route learned by participants is shown via the blue 

line; ‘S’ = start of route, ‘E’ = end of route. Landmarks (L) were all common real-world 

buildings: L1 = petrol station, L2 = bank, L3 = convenience store, L4 = bakery, L5 = hotel, L6 

= hardware store, L7 = bar, L8 = church, L9 = supermarket. Bottom left: A screenshot from 

one of the 16 cognitive map test trials. The text onscreen reads: “Turn to face the direction of 

the bakery”. Participants were required to provide verbal instructions (that the experimenter 

input) to rotate left or right until they believed the crosshair in the centre of the screen was 

directly facing the direction of the target landmark (e.g. the bakery). Bottom right: An 

illustration of how the pointing error measure was calculated in the cognitive map test. The 

illustration reflects the trial shown in the image on the bottom left where the participant’s initia l 
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orientation (green arrow) was directly facing the church (L8). The participant was asked to turn 

(black dashed arrow) to face towards the bakery (L4). The target landmark (e.g. the bakery) 

was never visible from any orientation during the cognitive map trials. The pointing error 

(degrees; yellow cone) between the correct direction (red arrow) and estimated direction (blue 

arrow) was calculated for each trial. Figure modified from Craig et al. (2016). 

 

2.5. Procedure 

2.5.1. Learning phase 

As in our previous work (Craig et al., 2016), participants were informed that they would 

be a ‘passenger’ in a car travelling through a virtual town. They were informed that they would 

be required to learn a long, indirect route through the environment and would be asked to 

provide directions to the experimenter (the ‘driver’) during a subsequent trial. Route learning 

was broken into learning cycles; each learning cycle included two learning trials followed by 

one probe trial. In a learning trial, the participant travelled the trained route (total distance = 

480.00 metres) via automated movement (linear movement = 3.20 metres per second, rotation 

movement = 12 degrees per second, total travel time = 153 seconds). In a probe trial, the 

participant again travelled the trained route. However, on this occasion automated movement 

temporarily paused at each junction (i.e. decision point) and the participant was asked to 

verbally state to the experimenter the direction (i.e. “left”, “right”, or “straight on”) that the 

trained route continued from that point. If the participant responded correctly (e.g. they 

responded “left”, where the correct direction was ‘left’), automated movement then continued 

to the next junction along the trained route. If the participant provided an incorrect response 

(e.g. they responded “right”, where the correct direction was ‘left’), a message (“incorrec t”) 

appeared onscreen informing them of their error. This was shortly followed by a large arrow 

that appeared on the ground of the virtual environment and indicated the correct direction. 
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Automated movement then continued to the next junction along the trained route. Participant’s 

verbal responses were input by the experimenter via a gaming steering wheel. Route learning 

was scored by calculating, for each participant, the total number of errors made during each 

route learning probe trial (minimum = 2 trials, maximum = 10 trials), until the participant was 

able to recall the route without making a single error. The total number of learning cycles 

required to learn the route was also recorded. Group means were computed subsequently.  

While we measured participants’ route memory performance immediately prior to the 

delay phase we did not measure their cognitive map performance at this juncture. A baseline 

cognitive map test could have resulted in participants suspecting a further cognitive map test, 

which could have motivated specific rehearsal of landmark-to-landmark relationships, 

especially during rest, and perhaps more so in the young than the older adults, thus adding 

confounds to the study. Moreover, given the dimensions of the virtual environment and the 

fixed number of landmarks within it, there was a limited number of possible trials that could 

be used to ensure that the cognitive map test did not probe memory for target landmarks that 

were visible or close in temporal order to the presented landmark. 

 

2.5.2. Delay phase 

During the 10min delay phase, participants either (i) rested wakefully under conditions 

of minimal sensory input, or (ii) performed an unrelated perceptual task (a spot-the-difference 

game) involving continuous sensory input. Twenty participants (10 young and 10 older adults) 

were allocated pseudo-randomly to each delay condition. See Craig et al. (2016) for more 

specific details regarding the two delay conditions. 

 

2.5.3. Testing phase 
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Following the delay phase, participants performed a free recall test for landmarks from 

the earlier navigated virtual environment. Participants were asked to verbally recall as many 

landmarks as possible. Once the participant had recalled all nine landmarks, or was unable to 

recall any further landmarks, they proceeded to the cognitive map test. The landmark free recall 

test (and subsequent landmark recall/recognition check built into the cognitive map test – see 

next paragraph) were included to verify whether any potential substantial errors in the cognit ive 

map test were associated with poor memory for landmarks per se, rather than with poor memory 

for the spatial relationships (i.e. directions) between landmarks. 

The cognitive map test comprised 16 trials that were presented via the curved screen, 

as during route learning. In each trial, the participant was positioned facing one of the nine 

landmarks within the environment. They were then instructed on-screen to rotate to face 

towards a second, specified target landmark within the environment (see Fig 1). Prior to 

rotating, participants were asked “can you recall the visual appearance of the target landmark?” 

If yes, they proceeded to perform the cognitive map trial (i.e. began rotating to face the target 

landmark). If they were unable to recall the visual appearance of the target landmark, they were 

presented with a colour photo of the target landmark and asked a follow-up question “do you 

recognise this landmark?” If yes, they proceeded to perform the cognitive map trial. If, 

however, participants were unable to recall and recognise the target landmark, the cognit ive 

map trial was abandoned, and the participant proceeded to the next cognitive map trial. The 

colour photos of target landmarks contained no contextual information from the virtua l 

environment that could aid performance in the cognitive map test, e.g. surrounding roads and 

buildings. 

For each cognitive map trial, pointing responses were input by the experimenter on 

behalf of the participant via the same steering wheel used during route learning. This was done 

to minimise the effects of possible individual differences in computer use and familiarity with 
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gaming controls. Participants were required to provide verbal instructions to rotate within the 

environment, which the experimenter input via the ‘left’ and ‘right’ directional keys on the 

same gaming steering wheel. Care was taken to ensure that the participant was satisfied with 

the exact direction that they were facing before the experimenter input each response.  

Upon completion of the cognitive map test, participants completed the Freiburg 

(German) version of the Santa Barbara Sense of Direction (F-SBSOD) questionnaire (Hegarty 

et al., 2002; Montello and Xiao, 2011), as well as a detailed post-experimental questionna ire 

that probed participants’ past experience using computers  (Moffat et al., 2001) and whether 

they actively rehearsed task-relevant information during their allocated delay condition (see 

Craig et al., 2016). 

 

2.6 Scoring 

The landmark free recall test was scored by extracting the total number of landmarks 

correctly recalled for each participant. Group means were computed subsequently. For the 

cognitive map test, we extracted the accuracy of responses for each trial, i.e. the number of 

degrees of absolute error between (i) the correct direction of the target landmark within the 

environment and (ii) the estimated direction of the target landmark (see Fig. 1). Group means 

were computed subsequently (see Craig et al., 2016 for full scoring details). 

 

2.7. Statistical analyses 

ANOVAs with between-subject factors delay condition (wakeful rest vs. perceptual 

task) and age (young vs. older) were performed to examine group differences in learning and 

cognitive map test performance. ANCOVAs were run with covariates gender, self-reported 

sense of direction (F-SBSOD) and past experience using computers, in order to examine group 

differences in learning and cognitive map performance after controlling for the effects of these 
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variables. In order to examine whether the cognitive map test might have been solved via 

mental travel along the route, rather than direct access to landmark-to-landmark relationships, 

Pearson correlations were calculated for each participant between absolute pointing error 

(degrees) and the distance travelled previously between the presented landmark and the target 

landmark. These correlation coefficients were normalized using Fisher’s r-to-z transformation 

and subsequently compared to 0 (no correlation) via Bayesian one-sample t-tests, for each of 

the four delay/age groups separately. The default Cauchy(0,1) prior for effect size (σ = 0.707) 

was used for Bayesian analyses (Rouder et al., 2009).  

 

3. Results 

3.1 Background measures 

There was no difference between the ratio of males and females in the wakeful rest and 

perceptual task groups in younger adults (wakeful rest: 5 females, 5 males; perceptual task: 4 

females, 6 males; p = 1.000, Fisher’s exact test) or older adults (wakeful rest: 6 females, 4 

males; perceptual task: 5 females, 5 males; p = 1.000, Fisher’s exact test). As expected, age 

differed significantly between the two age groups (F1,36 = 164.429, p < .001), but not between 

delay conditions (F1,36 = 0.370, p = .547). Thus, other than for the expected age group 

manipulation, our delay condition groups were matched in terms of gender and age. 

For self-reported sense of direction (F-SBSOD) scores, we found a significant main 

effect of age group (F1,36 = 4.215, p = .047) due to older adults (mean = 3.49/7, SD = 0.78) 

reporting having a better sense of direction than younger adults (mean = 2.95/7, SD = 0.85). 

No main effect of delay condition (F1,36 = 0.540, p = .467), or interaction between age group 

and delay condition was observed (F1,36 = 0.208, p = .651).  

For self-reported past-experience using computers, a significant main effect of age was 

again observed (F1,36 = 18.807, p < .001), but on this occasion it was due to younger adults 
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reporting having more experience (mean = 13.9/21, SD = 3.19) than older adults (mean = 

8.70/21, SD = 4.19). No significant main effect of delay condition (F1,36 = 0.696, p = .410), or 

significant interaction between delay condition and age group (F1,36 = 0.028, p = .868) was 

observed. 

 

3.2. Route learning 

3.2.1. Learning cycles 

All but one participant (older adult – perceptual task group) were able to learn the route 

to a 100% criterion within the fixed minimum of two learning cycles (four learning trials and 

two probe trials). The participant who did not learn the route within two learning cycles was 

able to do so within three learning cycles. We found no significant main effect of age group 

(F1,36 = 1.000, p = .324) or delay condition (F1,36 = 1.000, p = .324) in the number of learning 

cycles required to learn the route, nor did we observe a significant interaction between age 

group and delay condition (F1,36 = 1.000, p = .324). These findings did not change after 

controlling for the effects of gender, self-reported sense of direction, and past experience with 

computers (age group: F1,33 = 0.114, p = .738; delay condition: F1,33 = 0.998, p = .325; delay 

condition*age group interaction: F1,33 = 0.866, p = .359). In addition, no covariates were 

significantly related to the number of learning trials required (all p > .340).  

Two older adults suffered from nausea during route learning and exited route learning 

after one learning cycle (two learning trials and one probe trial). These two participants made 

zero errors during the probe trial of learning cycle one (i.e. they appeared to have learned the 

route), and no results changed when these participants were removed from analyses. 

 

3.2.2. Learning errors 
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Table 1 shows (i) the mean number of errors made by younger and older adults in the 

rest and perceptual task delay conditions during each route learning probe trial individually, as 

well as during learning overall, and (ii) the number of participants who performed at criterion 

(i.e. zero errors) in each probe trial relative to the number of participants who completed each 

probe trial. We found no significant main effect of delay condition in the number of errors 

made during route learning (F1,36 = 0.027, p = .871). There was however a significant effect of 

age group on the number of errors made (F1,36 = 4.540, p = .040), due to older adults (mean = 

1.00, SD = 1.26) making a greater number of errors than younger adults (mean = 0.20, SD = 

0.41) across both delay conditions, i.e. no significant interaction between delay condition and 

age group was observed (F1,36 = 0.242, p = .626). When controlling for the effects of gender, 

self-reported sense of direction, and past experience with computers, the significant main effect 

of age group was no longer observed, though it was approaching significance (F1,33 = 2.821, p 

= .098). No change was observed in other results (delay condition: F1,33 = 0.099, p = .755; 

delay condition*age group interaction: F1,33 = 0.098, p = .756), and as before, no covariates 

were significantly related to the number of errors made during learning (all p > .466).  

Together, these analyses indicate that delay conditions (wakeful rest vs. perceptual task) 

did not differ significantly in terms of route memory performance prior to the critical delay. 

While an effect of age was observed in route learning, all participants learned the route to 

criterion, and thus pre-delay route memory performance was matched across all groups. 

 

Table 1. For younger and older adults in the wakeful rest and perceptual task delay conditions, the table shows (i) mean  

number of errors (wrong turns) made during route learning probe trials (standard deviation s are shown in parentheses), and 

(ii) number of participants who performed at criterion (i.e. zero errors) in each probe trial relative to the number of 

participants who completed each probe trial. *One older adult in the rest group and one older adult in the task group exited  

the learning phase after Probe trial 1 due to nausea associated with the virtual reality equipment. These participants made 

zero errors in Probe trial 1. 

Delay condition Probe 1 

errors 

Probe 1 

criterion 

Probe 2 

errors 

Probe 2 

criterion 

Probe 3 

errors 

Probe 3 

criterion 

Overall 

Young adults        

        Wakeful rest  0.30 (0.48) 7/10 0.00  10/10 - - 0.30 (0.48) 

        Perceptual task 0.10 (0.32) 9/10 0.00  10/10 - - 0.10 (0.32) 
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Older adults        

        Wakeful rest 1.00 (1.05) 4/10 0.00  9/9* - - 1.00 (1.05) 

        Perceptual task 0.70 (0.67) 4/10 0.30 (0.95) 8/9* 0.00  1/1 1.00 (1.49) 

 

3.3. Free recall of landmarks  

Performance across both delay conditions and age groups was near ceiling (see Fig 2). 

As a result, there was no significant main effect of delay condition on the number of landmarks 

recalled (F1,36 = 1.627, p = .210). However, we did observe a significant main effect of age 

group (F1,36 = 4.983, p = .032), such that younger adults recalled more landmarks than older 

adults. We also found a near significant interaction between delay condition and age group  

(F1,36 = 3.661, p = .064), indicating possible differing effects of the two delay conditions in the 

two age groups. Planned comparisons revealed no significant difference in the number of 

landmarks recalled between delay conditions in young adults (t18 = -0.480, p = .637). However, 

among older participants, those who rested after learning recalled a significantly greater 

number of landmarks than those who performed the perceptual task (t18 = 2.132, p = .047). 

 

 

Fig 2. Landmark free recall test. Mean number of landmarks recalled as a function of delay 

condition (wakeful rest vs. perceptual task) and age group (young vs. older adults). There were 
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nine landmarks in total, and thus the maximum possible score in this test was /9. A significant 

benefit of rest was observed in the number of landmarks recalled by older adults. Error bars 

show the standard error of the mean. Significance thresholds: * = p <.05, ** = p < .01, and *** 

= p < .001. 

 

After controlling for the effects of gender, self-reported sense of direction, and past 

experience with computers, the previously significant effect of age was non-significant (age 

group: F1,33 = 0.978, p = .330). No other results were found to change (delay condition: F1,33 = 

2.152, p = .152; delay condition*age group interaction: F1,33 = 3.124, p = .086). No covariates 

were significantly related to the mean number of landmarks recalled (all p > .279).  

In addition, after controlling for the number of learning cycles required to learn the 

route, none of our results changed (delay condition: F1,35 = 1.209, p = .279; age group: F1,35 = 

4.170, p = .049; delay condition*age group interaction: F1,35 = 2.986, p = .093). The number 

of learning cycles was not significantly related to the number of landmarks recalled (F1,35 = 

0.913, p = .346). Similarly, after controlling for the number of errors made during route 

learning, none of our results changed (delay condition: F1,35 = 1.506, p = .228; age group: F1,35 

= 5.261, p = .028; delay condition*age group interaction: F1,35 = 3.732, p = .062). The number 

of errors made during learning was not significantly related to the number of landmarks 

recalled (F1,35 = 0.438, p = .512).Taken together, these findings demonstrate that post-delay 

memory for landmarks was unrelated to pre-delay route learning performance. 

 

3.4. Cognitive map test 

3.4.1. Landmark recall/recognition 

There were only a small number of trials (/160 per group) during which participants 

reported being unable to recall the visual appearance of one or more target landmarks in the 
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cognitive map test (young wakeful rest: 2/160 trials; young perceptual task: 2/160 trials; older 

wakeful rest: 6/160 trials; older perceptual task: 2/160 trials). Furthermore, when presented 

with a photo cue of the target landmark, no participants reported being unable to recognise 

target landmarks. Thus, this substantially reduced the possibility of cognitive map errors being 

driven by a failure to remember landmarks and thus by guessing.  

 

3.4.2. Accuracy of responses 

Across all participants, six cognitive map test trials (0.94% of all trials) were abandoned due 

to experimenter error and were thus removed from analyses. Data from the remaining trials 

revealed a significant main effect of delay condition on the accuracy of responses in the 

cognitive map test (F1,36 = 20.866, p < .001), such that those who experienced wakeful rest 

after learning outperformed those who performed the perceptual task after learning (Fig 3). In 

addition, a significant main effect of age group was observed (F1,36 = 21.531, p < .001), such 

that younger adults provided more accurate responses than older adults. Our results indicate 

that this was the case across both delay conditions (wakeful rest: t18 = -3.801, p = 001; 

perceptual task: t18 = -2.951, p = 009; planned comparisons), and that there was no significant 

interaction between delay condition and age group (F1,36 = 0.008, p = .931), thus suggesting 

that the rest-related enhancement in pointing accuracy was comparable in younger and older 

adults. Planned comparisons confirmed that young participants in the wakeful rest delay 

condition outperformed young participants in the perceptual task delay condition in the 

cognitive map test (t18 = -2.769, p = .013). This was also the case for older participants (t18 = -

3.960, p = .001).  
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Fig 3. The cognitive map test. Mean angle of absolute error (degrees) in the cognitive map 

test as a function of delay condition (wakeful rest vs. perceptual task) and age group (young 

vs. older adults). Younger and older adults who experienced wakeful rest after learning 

performed significantly better than those who performed a perceptual task. Error bars show the 

standard error of the mean. Significance thresholds: * = p <.05, ** = p < .01, and *** = p < 

.001. 

  

The benefit of wakeful rest in cognitive map test performance remained after 

controlling for the effects of gender, self-reported sense of direction, and past experience with 

computers (F1,33 = 25.674, p < .001). The significant effect of age group also remained when 

controlling for these covariates (F1,33 = 13.036, p = .001). As before, no significant interaction 

between delay condition and age group was observed (F1,33 = 0.023, p = .881). No covariates 

were significantly related to mean pointing error (all p > .348). 

When the number of landmarks recalled prior to the cognitive map test was included as 

a covariate, no results changed (delay condition: F1,35 = 19.098, p = .001; age group: F1,35 = 

17.869, p < .001; interaction: F1,35 = 0.301, p = .587). Furthermore, there was no significant 

main effect of the number of landmarks recalled in predicting pointing error throughout the 
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cognitive map test (F1,35 = 0.001, p = .979), suggesting that cognitive map test performance 

differences could not be accounted for by differences in landmark free recall but by memory 

for spatial relationships (i.e. directions and distances) between landmarks in the spatial 

environment. 

In addition, after controlling for the number of learning cycles required to learn the 

route, no results changed (delay condition: F1,35 = 21.161, p < .001; age group: F1,35 = 21.817, 

p < .001; delay condition*age group interaction: F1,35 = 0.043, p = .837). The number of 

learning cycles was not significantly related to cognitive map test pointing error (F1,35 = 0.554, 

p = .462). Similarly, after controlling for the number of errors made during route learning, no 

results changed (delay condition: F1,35 = 20.354, p < .001; age group: F1,35 = 16.656, p < .001; 

delay condition*age group interaction: F1,35 = 0.006, p = .941). Furthermore, the number of 

errors made during route learning was not significantly related to cognitive map test pointing 

error (F1,35 = 0.044, p = .836). Taken together, this demonstrates that post-delay cognitive map 

test performance was unrelated to pre-delay route learning performance. 

Instead of directly accessing landmark-to-landmark relationships, participants could 

have solved the cognitive map pointing task by mentally travelling along the route from the 

presented landmark to the target landmark. This strategy would lead to larger pointing errors 

on trials for which the distance between the two landmarks, as travelled during learning, was 

longer (Wolbers et al., 2004). However, Bayesian one-sample t-tests on Fisher z-transformed 

r values provided some (BF01 = odds greater than 3) evidence (Jeffreys, 1961) in favour of the 

null hypothesis, i.e. our data suggest there was no correlation between the distance between 

landmarks and pointing errors (young adults - wakeful rest: BF01 = 3.137, perceptual task: BF01 

= 2.429; older adults - wakeful rest: BF01 = 3.209, perceptual task: BF01 = 2.378). This finding 

is reflective of our recent work (Craig et al., 2016) and suggests that participants did not solve 

the cognitive map test via mentally travelling along the route. Figure 4 shows mean pointing 
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error scores, for each group, as function of the distance between the presented and target 

landmark. 

 

 

Fig 4. Cognitive map test performance as a function of distance between presented and target 

landmarks. Mean absolute angle of error (degrees) in the cognitive map test for younger and 

older adults in the wakeful rest and perceptual task groups broken down by distance between 

the presented and target landmarks (metres). Error bars show the standard error of the mean. 

 

3.5. Post-experimental reports 

As found in our recent research (Craig et al., 2016, 2015, 2014; Dewar et al., 2012a), 

no participants reported sleep-related activity and the majority of participants in the wakeful 

rest delay condition (young adults: n = 7/10, 70%; older adults: n = 6/10, 60%) reported 

spontaneous task-unrelated thoughts, e.g. recalling the past and imagining the future. In 

addition, 10 (4/10 young adults, 40%; 6/10 older adults, 60%) participants in the wakeful rest 

delay condition and 9 participants (4/10 young adults, 40%; 5/10 older adults, 50%) in the 

perceptual task delay condition reported that they had expected a further memory test at the 

end of the experiment. Of these, five participants (1/10 young wakeful rest, 1/10 young 
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perceptual task, 3/10 older wakeful rest) reported intentionally thinking about information 

pertaining to the learned route during the 10min delay condition. None of our results changed 

when these participants were removed from analyses. Furthermore, intentional thoughts 

relating to the route would have been limited to knowledge of specific experience (i.e. the 

learned route) rather than inter-landmark relationships, as required in solving the cognitive map 

test. 

 

4. Discussion 

We recently demonstrated that in healthy young adults the consolidation and integrat ion 

of new spatial memories (into accurate cognitive maps) can be enhanced significantly via a 

short period of post-navigation rest (Craig et al., 2016). In the current study we replicate this 

finding in young adults and provide the first evidence that a comparable rest-related 

enhancement of cognitive map accuracy is observable in older adults. This novel finding 

suggests that rest continues to support spatial memory consolidation and integration as we grow 

older and that rest-related consolidation boosts do not decline with age. 

 

4.1 The cognitive basis of the rest-related enhancement in cognitive map test accuracy  

Our results suggest that the benefit of wakeful rest in cognitive map test pointing 

accuracy cannot be accounted for by group differences in pre-delay route memory, past 

experience with computers, or self-reported sense of direction (see also Craig et al., 2016). In 

young and older adults, our delay conditions did not differ in terms of route learning (i.e. the 

number of learning cycles required and errors made during route learning) prior to the critical 

delay condition phase (i.e. wakeful vs. perceptual task). Furthermore, participants’ ability to 

learn the route was unrelated to post-delay performance in the cognitive map test. Together, 

this suggests that the between-delay condition differences in cognitive map test performance 



REST PROMOTES SPATIAL MEMORY CONSOLIDATION  23 
 

 

in younger and older adults are likely to be a direct result of our critical delay condition 

manipulation (rest vs. task), although we note that, in the absence of a baseline cognitive map 

test, we cannot rule out the possibility of some pre-delay cognitive mapping differences 

between the delay conditions  (i.e. "better pointers" in the wakeful rest condition and "worse 

pointers" in the perceptual task condition). 

A small number of participants reported intentionally rehearsing information pertaining 

to the virtual environment during their allocated delay condition. This rehearsal could not 

account for the between-delay condition difference in cognitive map accuracy in younger and 

older adults, as this difference persisted following removal of these participants from the 

analysis - a finding reflective of previous work (Craig et al., 2016, 2015, 2014; Dewar et al., 

2014, 2012a). Furthermore, given that participants were unaware that they would perform a 

post-delay cognitive map test, rehearsal in the current study is likely to have been focused on 

specific experiences, e.g. the travelled route. Rehearsal of such information would have been 

of limited use since the cognitive map test did not examine memory for specific experience, 

but rather examined knowledge of overarching (and never-directly experienced) spatial 

relations (i.e. directions) between landmarks. This notwithstanding, rehearsal could have aided 

cognitive map test performance if participants solved the test by mentally travelling the learned 

route between the presented and target landmarks. This is unlikely, though, as pointing errors 

did not increase as a function of increasing distance (between the presented and target 

landmarks) in cognitive map test trials, which would be predicted by this strategy (Ghaem et 

al., 1997; Wolbers et al., 2004).  

When probing memory for landmarks experienced along the route via a free recall test, 

young adults’ performance was close to ceiling across both delay conditions. However, older 

adults’ performance was slightly better in the rest condition than in the perceptual task 

condition, and this difference reached significance. These results suggest that rest boosted 
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landmark memory in the older adults. Based on previous research (Craig et al., 2016, 2015, 

2014) we would also expect to observe a benefit of rest in landmark memory in young adults 

if it were not for the apparent ceiling effect within this age group. It could therefore be argued 

that between-delay condition differences in the cognitive map test were driven by a more basic 

difference in landmark memory, in as much as cognitive map test performance would be 

impeded by poorer landmark memory. However, free recall of landmarks was high across 

participants, even in the older adults in the perceptual task condition. Moreover, all participants 

were able to recall or recognise the visual appearance of all target landmarks in the cognit ive 

map test, and the free recall of landmarks did not correlate with cognitive map test pointing 

error. Thus, while good landmark memory will have been essential for successful performance 

in the cognitive map test, our findings indicate that the benefit of rest in the cognitive map test 

was not driven primarily by superior memory of landmarks, but by enhanced configura l 

knowledge of the spatial locations of landmarks and inter-landmark relationships (i.e. 

directions and distances). 

 This rest-related enhancement in configural knowledge can be explained by a 

consolidation account. Research suggests that post-learning wakeful rest provides conditions 

that are conducive to memory consolidation. Rest is hypothesised to support consolidation by 

reducing the amount of sensory input and associated encoding, which would otherwise interfere 

with consolidation-related processes (such as neural reactivation) during the critical minutes 

that immediately follow new learning when a memory trace is most labile (Alber et al., 2014; 

Dewar et al., 2012a; Mednick et al., 2011). In line with this hypothesis we put forward that the 

reduced sensory input provided by rest allowed for superior consolidation/integration of spatial 

memories into an accurate cognitive map of the navigated environment (see also Craig et al., 

2016). Our proposal resonates with the hypothesis that memory consolidation is an 

opportunistic process (Mednick et al., 2011), and the quantity and/or quality of consolidation-
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related processes (e.g. hippocampal reactivation) may depend on the amount and/or regular ity 

of sensory input and associated encoding in the time that follows learning (Craig et al., 2016). 

 We note that our wakeful rest condition – sitting in a dimly lit room in the absence of 

the experimenter under conditions of minimal sensory input for 10 minutes – might be 

conducive not only to wakeful resting but also to sleep. Research shows that many participants 

in resting state fMRI studies experience sleep after ~3 minutes (Tagliazucchi and Laufs, 2014). 

Sleep is known to play an important role in memory consolidation and integration. Thus, could 

sleep account for the benefit of ‘wakeful rest’ in our cognitive map test? When probed in detail 

after the experiment (post-experimental questionnaire), no participants reported any sleep-

related activity during the rest delay. However, we cannot exclude the possibility that some 

participants entered brief local sleep or microsleeps. Further studies using electrophysiologica l 

methods are necessary to examine if local sleep and/or microsleep contribute to the benefit of 

wakeful rest.  

 While the data reported in this paper replicate our previous finding that rest enhances 

cognitive map accuracy in younger adults (Craig et al., 2016), the error scores observed in the 

current study are larger than those seen in our previous work. It is likely that this increase in 

error score is the result of differences in the method of presentation. In the current study we 

presented the virtual environment and cognitive map test on a large curved projector screen (h 

= 2.00m, w = 2.40m, d = 1.25m), while a much smaller (h = 0.34m, w = 0.45m) flat-screen 

computer monitor was used in our previous study (Craig et al., 2016). On the large curved 

display, the extraction of spatial information from rich visual input required much larger/more 

eye and/or head movements. This could have introduced additional noise in the ensuing spatial 

knowledge that increased error scores in younger and older adults across both the rest and task 

delay conditions. As a result, the error scores observed in the current study may be more 

reflective of those during real-world navigation. Indeed, similar research (Ishikawa and 
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Montello, 2006) probing cognitive mapping in the real-world has demonstrated  comparable 

error scores (~40 degrees of absolute error) to those found in our study. 

 

4.2 Poorer cognitive map accuracy in older adults than young adults – cognitive basis 

Older adults performed more poorly on the cognitive map test than did younger adults , 

i.e. they demonstrated larger pointing errors. It is unlikely that this group difference can be 

accounted for simply by differences between young and older adults’ experience using 

computers and virtual reality technology. We found no effect of past-experience using 

computers in cognitive map test performance, and participants provided verbal responses 

during learning and testing.  

Thus, the age difference observed in our cognitive map test appears to reflect a genuine 

difference in spatial memory performance between younger and older adults. Previous research 

has focused on encoding and retrieval accounts of such age differences. For example, research 

demonstrates that older adults require more time exploring a spatial environment in order to 

encode/form a cognitive map (Iaria et al., 2009). In our study, we aimed to reduce the possible 

influence of an age-related encoding deficit by training all participants to criterion during route 

learning prior to entering the delay phase. This notwithstanding, we note that the older 

participants did make more errors during learning, and that comparable performance on the 

final trial of the route learning test need not imply comparable baseline memory. Age-related 

encoding deficits may have been detected less easily in the route memory test than in the 

subsequent cognitive map test due to differences in test resolution (error number vs degrees 

respectively) and/or the relative ease of the route memory test compared to the cognitive map 

test. Therefore, in the absence of a baseline cognitive map test, we cannot rule out the 

possibility that age-related encoding deficits contributed to the age effect in our cognitive map 
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test, i.e. that older adults entered the delay phase with spatial memories that were already less 

specific, thus resulting in less accurate cognitive maps. 

Previous cognitive map research in humans suggests that older adults present with a 

reduced ability to retrieve (i.e. access) a recently encoded cognitive map during subsequent 

navigation (Iaria et al., 2009). In keeping with this finding, research in rodents shows that older 

rodents present with deficits in the retrieval of recently encoded spatial memories (Neumeister 

et al., 2013), which can manifest as the retrieval of incorrect cognitive maps (i.e. competition 

for retrieval) (Barnes et al., 1997). Although our virtual environment was reflective of a town-

like environment, it is unlikely that it was sufficiently similar to previously experienced real-

world environments to lead to competition for retrieval. Furthermore, our between-subjects 

design rules out the possibility of competition for retrieval of experimental stimuli (i.e. between 

two similar virtual environments). It is therefore unlikely that increased retrieval interference 

in older adults can account for the negative effect of ageing in cognitive map test performance  

in our study. It is of course possible that a more general decline in retrieval ability was present 

in older adults and can account for the age effect. However, all participants performed near 

ceiling in the landmark free recall test and above chance in the cognitive map test, thus 

suggesting that older adults did not have any obvious deficit in retrieval that influenced 

cognitive map test performance, though a more subtle deficit may have contributed somewhat. 

A hypothesis rarely considered is that the spatial navigation deficit in older adults, 

including cognitive mapping, may be explained, at least in part, by an age-related decline in 

the ability to consolidate and integrate new (spatial) memories. It is possible that as a 

consequence of increasing age, consolidation may change quantitatively, i.e. less 

consolidation-related activity (e.g. neural reactivation) may occur in older adults. Alternative ly 

(or in addition), consolidation may change qualitatively, i.e. consolidation (e.g. neural 

reactivation) might be of a lower quality and/or is less efficient in older adults. This hypothesis 
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is supported by sleep research in humans that demonstrates age-related changes in the quantity 

and quality of consolidation-related neural activity (e.g. sleep spindles and sharp wave ripples) 

(Harand et al., 2012). As a result, it is possible that a shortcoming in spatial memory 

consolidation/integration in older adults is responsible, at least in part, for the negative effect 

of age in our study.  

 

4.3 Comparable rest-related benefits on cognitive map accuracy in young and older adults - 

cognitive basis 

Interestingly, the magnitude of the rest benefit in cognitive map accuracy was 

comparable in young and older adults. This finding suggests that the consolidation/integra t ion 

process in older adults does not become more susceptible to consolidation interference from 

ongoing sensory input (and associated encoding). If this were the case, a greater benefit of 

wakeful rest should have been observed in older than younger adults, as found in aMCI and 

AD patients who, relative to young/older adults, demonstrate a striking consolidat ion 

interference effect that can be reduced substantially by post-learning rest (Alber et al., 2014; 

Dewar et al., 2012b, 2009). Moreover, this finding suggests that rest-related consolidat ion 

boosts do not decline substantially in older age. If this were the case, a sizeable reduction in 

the benefit of wakeful rest should have been observed in older than in younger adults. Our 

finding of a comparable rest-related memory enhancement in young and older adults contrasts 

with the finding of age-related declines in neural activity associated with sleep-dependent 

memory consolidation (Harand et al., 2012). Further research should examine the effect of 

increasing age on consolidation at a behavioural and neural level, both under conditions of rest 

and sleep. We acknowledge that when the rest effect is viewed as a percentage (e.g. if the ‘task 

group’ mean = 45 degrees of error, and ‘rest group’ mean = 30 degrees of error, this would 

equate to a 33% ‘improvement’), the benefit of rest is slightly lower in older adults. Thus, our 
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data suggest that wakeful rest benefits both older and younger subjects compared to a delay 

condition involving a perceptual task, but the relative magnitude of the wakeful rest effect 

could be somewhat different between the age groups. 

 

5. Conclusion 

In summary, we provide the first evidence that post-navigation rest promotes the 

integration of spatial memories into accurate cognitive maps in older adults. We also reveal 

that the magnitude of this rest-related enhancement does not change substantially as we grow 

older. However, older people performed more poorly than younger people on the cognit ive 

map test overall. Although this effect could not be explained by increased consolidat ion 

interference in older adults, it is possible that a more general decline in the ability to consolidate 

and integrate new memories contributes to impoverished cognitive maps in older adults. 

Alternatively, it is possible that age-related reductions in cognitive mapping are the result of a 

deficit in initial encoding, or of a combination of age-related encoding and consolidat ion 

deficits. These hypotheses should be teased apart via future research.  
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