635 research outputs found

    Feature detection using spikes: the greedy approach

    Full text link
    A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic feed-forward model of the primary visual area (VI) solving this problem in the case where the signal may be described by a robust linear generative model. This model uses an over-complete dictionary of primitives which provides a distributed probabilistic representation of input features. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which uses incremental greedy inference processes. This algorithm is similar to 'Matching Pursuit' and mimics the parallel architecture of neural computations. We propose here a simple implementation using a network of spiking integrate-and-fire neurons which communicate using lateral interactions. Numerical simulations show that this Sparse Spike Coding strategy provides an efficient model for representing visual data from a set of natural images. Even though it is simplistic, this transformation of spatial data into a spatio-temporal pattern of binary events provides an accurate description of some complex neural patterns observed in the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing the underlying hypotheses (linear model, uniform prior, gaussian noise model). A parallel with the parallel and event-based nature of neural computations is explored and we show application to modelling Primary Visual Cortex / image processsing. http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau

    When your eyes see more than you do

    Get PDF
    SummaryVisual information is used by the brain to construct a conscious experience of the visual world and to guide motor actions [1]. Here we report a study of how eye movements and perception relate to each other. We compared the ability of human observers to perceive image motion with the reliability of their eyes to track the motion of a target [2–4], the goal being to test whether both motor and sensory processes are based on the same set of signals and limited by a shared source of noise [2,4]. We found that the oculomotor system can detect fluctuations in the velocity of a moving target better than the observer. Surprisingly, in some conditions, eye movements reliably respond to the velocity fluctuations of a moving target that are otherwise perceptually invisible to the subjects. The implication is that visual motion signals exist in the brain that can be used to guide motor actions without evoking a perceptual outcome nor being accessible to conscious scrutiny

    Theta Motion Processing in Fruit Flies

    Get PDF
    The tiny brains of insects presumably impose significant computational limitations on algorithms controlling their behavior. Nevertheless, they perform fast and sophisticated visual maneuvers. This includes tracking features composed of second-order motion, in which the feature is defined by higher-order image statistics, but not simple correlations in luminance. Flies can track the true direction of even theta motions, in which the first-order (luminance) motion is directed opposite the second-order moving feature. We exploited this paradoxical feature tracking response to dissect the particular image properties that flies use to track moving objects. We find that theta motion detection is not simply a result of steering toward any spatially restricted flicker. Rather, our results show that fly high-order feature tracking responses can be broken down into positional and velocity components – in other words, the responses can be modeled as a superposition of two independent steering efforts. We isolate these elements to show that each has differing influence on phase and amplitude of steering responses, and together they explain the time course of second-order motion tracking responses during flight. These observations are relevant to natural scenes, where moving features can be much more complex

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Semantic learning in autonomously active recurrent neural networks

    Full text link
    The human brain is autonomously active, being characterized by a self-sustained neural activity which would be present even in the absence of external sensory stimuli. Here we study the interrelation between the self-sustained activity in autonomously active recurrent neural nets and external sensory stimuli. There is no a priori semantical relation between the influx of external stimuli and the patterns generated internally by the autonomous and ongoing brain dynamics. The question then arises when and how are semantic correlations between internal and external dynamical processes learned and built up? We study this problem within the paradigm of transient state dynamics for the neural activity in recurrent neural nets, i.e. for an autonomous neural activity characterized by an infinite time-series of transiently stable attractor states. We propose that external stimuli will be relevant during the sensitive periods, {\it viz} the transition period between one transient state and the subsequent semi-stable attractor. A diffusive learning signal is generated unsupervised whenever the stimulus influences the internal dynamics qualitatively. For testing we have presented to the model system stimuli corresponding to the bars and stripes problem. We found that the system performs a non-linear independent component analysis on its own, being continuously and autonomously active. This emergent cognitive capability results here from a general principle for the neural dynamics, the competition between neural ensembles.Comment: Journal of Algorithms in Cognition, Informatics and Logic, special issue on `Perspectives and Challenges for Recurrent Neural Networks', in pres

    BOLD human responses to chromatic spatial features

    Get PDF
    Animal physiological and human psychophysical studies suggest that an early step in visual processing involves the detection and identification of features such as lines and edges, by neural mechanisms with even- and odd-symmetric receptive fields. Functional imaging studies also demonstrate mechanisms with even- and odd-receptive fields in early visual areas, in response to luminance-modulated stimuli. In this study we measured fMRI BOLD responses to 2-D stimuli composed of only even or only odd symmetric features, and to an amplitude-matched random noise control, modulated in red-green equiluminant colour contrast. All these stimuli had identical power but different phase spectra, either highly congruent (even or odd symmetry stimuli) or random (noise). At equiluminance, V1 BOLD activity showed no preference between congruent- and random-phase stimuli, as well as no preference between even and odd symmetric stimuli. Areas higher in the visual hierarchy, both along the dorsal pathway (caudal part of the intraparietal sulcus, dorsal LO and V3A) and the ventral pathway (V4), responded preferentially to odd symmetry over even symmetry stimuli, and to congruent over random phase stimuli. Interestingly, V1 showed an equal increase in BOLD activity at each alternation between stimuli of different symmetry, suggesting the existence of specialised mechanisms for the detection of edges and lines such as even- and odd-chromatic receptive fields. Overall the results indicate a high selectivity of colour-selective neurons to spatial phase along both the dorsal and the ventral pathways in humans
    • …
    corecore