1,303 research outputs found
Locality and topology with fat link overlap actions
We study the locality and topological properties of fat link clover overlap
(FCO) actions. We find that a small amount of fattening (2-4 steps of APE or 1
step of HYP) already results in greatly improved properties compared to the
Wilson overlap (WO). We present a detailed study of the localisation of the FCO
and its connection to the density of low modes of . In contrast to
the Wilson overlap, on quenched gauge backgrounds we do not find any dependence
of the localization of the FCO on the gauge coupling. This suggests that the
FCO remains local in the continuum limit. The FCO also faithfully reproduces
the zero mode wave functions of typical lattice instantons, not like the Wilson
overlap. After a general discussion of different lattice definitions of the
topological charge we also show that the FCO together with the Boulder charge
are likely to satisfy the index theorem in the continuum limit. Finally, we
present a high statistics computation of the quenched topological
susceptibility with the FCO action.Comment: 19 pages, LaTe
Liquid-Solid Transition of Hard Spheres Under Gravity
We investigate the liquid-solid transition of two dimensional hard spheres in
the presence of gravity. We determine the transition temperature and the
fraction of particles in the solid regime as a function of temperature via
Even-Driven molecular dynamics simulations and compare them with the
theoretical predictions. We then examine the configurational statistics of a
vibrating bed from the view point of the liquid-solid transition by explicitly
determining the transition temperature and the effective temperature, T, of the
bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure
Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions
We present a theoretical description of the thermopower due to
magnon-assisted tunneling in a mesoscopic tunnel junction between two
ferromagnetic metals. The thermopower is generated in the course of thermal
equilibration between two baths of magnons, mediated by electrons. For a
junction between two ferromagnets with antiparallel polarizations, the ability
of magnon-assisted tunneling to create thermopower depends on the
difference between the size of the majority and
minority band Fermi surfaces and it is proportional to a temperature dependent
factor where is the magnon Debye
energy. The latter factor reflects the fractional change in the net
magnetization of the reservoirs due to thermal magnons at temperature
(Bloch's law). In contrast, the contribution of magnon-assisted
tunneling to the thermopower of a junction with parallel polarizations is
negligible. As the relative polarizations of ferromagnetic layers can be
manipulated by an external magnetic field, a large difference results in a magnetothermopower effect. This
magnetothermopower effect becomes giant in the extreme case of a junction
between two half-metallic ferromagnets, .Comment: 9 pages, 4 eps figure
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material
We report on experiments to measure the temporal and spatial evolution of
packing arrangements of anisotropic, cylindrical granular material, using
high-resolution capacitive monitoring. In these experiments, the particle
configurations start from an initially disordered, low-packing-fraction state
and under vertical vibrations evolve to a dense, highly ordered, nematic state
in which the long particle axes align with the vertical tube walls. We find
that the orientational ordering process is reflected in a characteristic, steep
rise in the local packing fraction. At any given height inside the packing, the
ordering is initiated at the container walls and proceeds inward. We explore
the evolution of the local as well as the height-averaged packing fraction as a
function of vibration parameters and compare our results to relaxation
experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum
A qualitative mechanism for the emergence of domain structured background
gluon fields due to singularities in gauge field configurations is considered,
and a model displaying a type of mean field approximation to the QCD partition
function based on this mechanism is formulated. Estimation of the vacuum
parameters (gluon condensate, topological susceptibility, string constant and
quark condensate) indicates that domain-like structures lead to an area law for
the Wilson loop, nonzero topological susceptibility and spontaneous breakdown
of chiral symmetry. Gluon and ghost propagators in the presence of domains are
calculated explicitly and their analytical properties are discussed. The
Fourier transforms of the propagators are entire functions and thus describe
confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added
[1,2,4,5] and minor formulae corrected for typographical error
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
A continuously towed vertical bipole source for marine magnetometric resistivity surveying
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
