1,020 research outputs found

    Suppression of ABCE1-mediated mRNA translation limits N-MYC-driven cancer progression

    Full text link
    The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is “undruggable.” Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition

    The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (<it>ACADS</it>) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (<it>ACADM</it>) impair fatty acid ÎČ-oxidation. Chronic exposure to fatty acids due to an impaired ÎČ-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D.</p> <p>Methods</p> <p>The variants were genotyped using KASPar<sup>Âź </sup>PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (<it>n</it><sub><it>ACADS </it></sub>= 4,324; <it>n</it><sub><it>ACADM </it></sub>= 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (<it>n</it><sub><it>ACADS </it></sub>= 8,313; <it>n</it><sub><it>ACADM </it></sub>= 8,344).</p> <p>Results</p> <p>In glucose-tolerant individuals the minor C-allele of rs2014355 of <it>ACADS </it>associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (ÎČ) = -3.8% (-6.3%;-1.3%), <it>P </it>= 0.003), reduced incremental area under the insulin curve (ÎČ = -3.6% (-6.3%;-0.9%), <it>P </it>= 0.009), reduced acute insulin response (ÎČ = -2.2% (-4.2%;0.2%), <it>P </it>= 0.03), and with increased insulin sensitivity ISI<sub>Matsuda </sub>(ÎČ = 2.9% (0.5%;5.2%), <it>P </it>= 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, <it>P </it>= 0.21). rs11161510 of <it>ACADM </it>did not associate with any indices of glucose-stimulated insulin release or with T2D.</p> <p>Conclusions</p> <p>In glucose-tolerant individuals the minor C-allele of rs2014355 of <it>ACADS </it>was associated with reduced measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through an impaired ÎČ-oxidation of fatty acids.</p

    Teaching Feedback to First-year Medical Students: Long-term Skill Retention and Accuracy of Student Self-assessment

    Get PDF
    Giving and receiving feedback are critical skills and should be taught early in the process of medical education, yet few studies discuss the effect of feedback curricula for first-year medical students. To study short-term and long-term skills and attitudes of first-year medical students after a multidisciplinary feedback curriculum. Prospective pre- vs. post-course evaluation using mixed-methods data analysis. First-year students at a public university medical school. We collected anonymous student feedback to faculty before, immediately after, and 8 months after the curriculum and classified comments by recommendation (reinforcing/corrective) and specificity (global/specific). Students also self-rated their comfort with and quality of feedback. We assessed changes in comments (skills) and self-rated abilities (attitudes) across the three time points. Across the three time points, students’ evaluation contained more corrective specific comments per evaluation [pre-curriculum mean (SD) 0.48 (0.99); post-curriculum 1.20 (1.7); year-end 0.95 (1.5); p = 0.006]. Students reported increased skill and comfort in giving and receiving feedback and at providing constructive feedback (p &lt; 0.001). However, the number of specific comments on year-end evaluations declined [pre 3.35 (2.0); post 3.49 (2.3); year-end 2.8 (2.1)]; p = 0.008], as did students’ self-rated ability to give specific comments. Teaching feedback to early medical students resulted in improved skills of delivering corrective specific feedback and enhanced comfort with feedback. However, students’ overall ability to deliver specific feedback decreased over time

    Effectiveness of skills-based training using the Drink-less package to increase family practitioner confidence in intervening for alcohol use disorders

    Get PDF
    BACKGROUND: Misuse of alcohol is second only to tobacco as a leading cause of preventable death in Australia. There is an opportunity in family practice to detect problems and intervene with people at risk of alcohol-related harm before complications occur. However, family practitioners (FPs) report low levels of confidence in managing patients with drinking problems. The aim of this study was to determine whether the interactive training session using the 'Drink-less' package led to improvement in FPs' self-reported level of confidence in detecting and providing interventions for risky alcohol consumption. METHOD: FPs in urban and rural New South Wales were invited to training sessions in their local area. An introductory overview preceded a practical skills- based session, using the Drink-less package. Participants completed before and after evaluation forms. RESULTS: While 49% (CI 43 – 55) of the attending FPs indicated at baseline that they felt confident in identifying at-risk drinkers, this proportion rose to 90% (95% CI: 87 – 93) post-session, and they also reported increases in confidence from 36% (95% CI: 31 – 41) to 90% in their ability to advise patients. Urban FPs reported lower levels of confidence than rural FPs, both pre- and post-session. CONCLUSION: Training sessions in the Drink-less intervention resulted in increased self-reported confidence in detection and brief intervention for alcohol problems. Further research is needed to determine the duration of this effect and its influence on practice behaviour

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    RAD50 Is Required for Efficient Initiation of Resection and Recombinational Repair at Random, Îł-Induced Double-Strand Break Ends

    Get PDF
    Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random “dirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this “PFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after γ-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent

    Defective Resection at DNA Double-Strand Breaks Leads to De Novo Telomere Formation and Enhances Gene Targeting

    Get PDF
    The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2–4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Δ exo1Δ mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Δ exo1Δ, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Δ exo1Δ cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Shelterin-Like Proteins and Yku Inhibit Nucleolytic Processing of Saccharomyces cerevisiae Telomeres

    Get PDF
    Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks (DSBs) by packaging them into protective structures called telomeres that prevent DNA repair/recombination activities. Here we investigate the role of key telomeric proteins in protecting budding yeast telomeres from degradation. We show that the Saccharomyces cerevisiae shelterin-like proteins Rif1, Rif2, and Rap1 inhibit nucleolytic processing at both de novo and native telomeres during G1 and G2 cell cycle phases, with Rif2 and Rap1 showing the strongest effects. Also Yku prevents telomere resection in G1, independently of its role in non-homologous end joining. Yku and the shelterin-like proteins have additive effects in inhibiting DNA degradation at G1 de novo telomeres, where Yku plays the major role in preventing initiation, whereas Rif1, Rif2, and Rap1 act primarily by limiting extensive resection. In fact, exonucleolytic degradation of a de novo telomere is more efficient in yku70Δ than in rif2Δ G1 cells, but generation of ssDNA in Yku-lacking cells is limited to DNA regions close to the telomere tip. This limited processing is due to the inhibitory action of Rap1, Rif1, and Rif2, as their inactivation allows extensive telomere resection not only in wild-type but also in yku70Δ G1 cells. Finally, Rap1 and Rif2 prevent telomere degradation by inhibiting MRX access to telomeres, which are also protected from the Exo1 nuclease by Yku. Thus, chromosome end degradation is controlled by telomeric proteins that specifically inhibit the action of different nucleases
    • 

    corecore