77 research outputs found
Luminescent properties of Bi-doped polycrystalline KAlCl4
We observed an intensive near-infrared luminescence in Bi-doped KAlCl4
polycrystalline material. Luminescence dependence on the excitation wavelength
and temperature of the sample was studied. Our experimental results allow
asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion
which isomorphically substitutes potassium in the crystal. It was also
demonstrated that Bi+ luminescence features strongly depend on the local ion
surroundings
Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization
BACKGROUND
The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis), which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation.
FINDINGS
We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo.
CONCLUSIONS
These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms
Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system
Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS
Efficacy of a training intervention on the quality of practitioners' decision support for patients deciding about place of care at the end of life: A randomized control trial: Study protocol
<p>Abstract</p> <p>Background</p> <p>Most people prefer home palliation but die in an institution. Some experience decisional conflict when weighing options regarding place of care. Clinicians can identify patients' decisional needs and provide decision support, yet generally lack skills and confidence in doing so. This study aims to determine whether the quality of clinicians' decision support can be improved with a brief, theory-based, skills-building intervention.</p> <p>Theory</p> <p>The Ottawa Decision Support Framework (ODSF) guides an evidence based, practical approach to assist clinicians in providing high-quality decision support. The ODSF proposes that decisional needs [personal uncertainty, knowledge, values clarity, support, personal characteristics] strongly influence the quality of decisions patients make. Clinicians can improve decision quality by providing decision support to address decisional needs [clarify decisional needs, provide facts and probabilities, clarify values, support/guide deliberation, monitor/facilitate progress].</p> <p>Methods/Design</p> <p>The efficacy of a brief education intervention will be assessed in a two-phase study. In phase one a focused needs assessment will be conducted with key informants. Phase two is a randomized control trial where clinicians will be randomly allocated to an intervention or control group. The intervention, informed by the needs assessment, knowledge transfer best practices and the ODSF, comprises an online tutorial; an interactive skills building workshop; a decision support protocol; performance feedback, and educational outreach. Participants will be assessed: a) at baseline (quality of decision support); b) after the tutorial (knowledge); and c) four weeks after the other interventions (quality of decision support, intention to incorporate decision support into practice and perceived usefulness of intervention components). Between group differences in the primary outcome (quality of decision support scores) will be analyzed using ANOVA.</p> <p>Discussion</p> <p>Few studies have investigated the efficacy of an evidence-based, theory guided intervention aimed at assisting clinicians to strengthen their patient decision support skills. Expanding our understanding of how clinicians can best support palliative patients' decision-making will help to inform best practices in patient-centered palliative care. There is potential transferability of lessons learned to other care situations such as chronic condition management, advance directives and anticipatory care planning. Should the efficacy evaluation reveal clear improvements in the quality of decision support provided by clinicians who received the intervention, a larger scale implementation and effectiveness trial will be considered.</p> <p>Trial registration</p> <p>This study is registered as NCT00614003</p
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Localization and broadband follow-up of the gravitational-wave transient GW150914
© 2016. The American Astronomical Society. All rights reserved. A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by
the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)
detectors on 2015 September 14. The event, initially designated G184098
and later given the name GW150914, is described in detail elsewhere. By
prior arrangement, preliminary estimates of the time, significance, and
sky location of the event were shared with 63 teams of observers
covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths
with ground- and space-based facilities. In this Letter we describe the
low-latency analysis of the GW data and present the sky localization of
the first observed compact binary merger. We summarize the follow-up
observations reported by 25 teams via private Gamma-ray Coordinates
Network circulars, giving an overview of the participating facilities,
the GW sky localization coverage, the timeline, and depth of the
observations. As this event turned out to be a binary black hole merger,
there is little expectation of a detectable electromagnetic (EM)
signature. Nevertheless, this first broadband campaign to search for a
counterpart of an Advanced LIGO source represents a milestone and
highlights the broad capabilities of the transient astronomy community
and the observing strategies that have been developed to pursue neutron
star binary merger events. Detailed investigations of the EM data and
results of the EM follow-up campaign are being disseminated in papers by
the individual teams.
</p
- …