35 research outputs found
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj
We present U(1) flavor models for leptophobic Z' with flavor dependent
couplings to the right-handed up-type quarks in the Standard Model, which can
accommodate the recent data on the top forward-backward (FB) asymmetry and the
dijet resonance associated with a W boson reported by CDF Collaboration. Such
flavor-dependent leptophobic charge assignments generally require extra chiral
fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor
symmetry calls for new U(1)'-charged Higgs doublets in order for the SM
fermions to have realistic renormalizable Yukawa couplings. The stringent
constraints from the top FB asymmetry at the Tevatron and the same sign top
pair production at the LHC can be evaded due to contributions of the extra
Higgs doublets. We also show that the extension could realize cold dark matter
candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion,
accepted for publication in JHE
Theory and phenomenology of two-Higgs-doublet models
We discuss theoretical and phenomenological aspects of two-Higgs-doublet
extensions of the Standard Model. In general, these extensions have scalar
mediated flavour changing neutral currents which are strongly constrained by
experiment. Various strategies are discussed to control these flavour changing
scalar currents and their phenomenological consequences are analysed. In
particular, scenarios with natural flavour conservation are investigated,
including the so-called type I and type II models as well as lepton-specific
and inert models. Type III models are then discussed, where scalar flavour
changing neutral currents are present at tree level, but are suppressed by
either specific ansatze for the Yukawa couplings or by the introduction of
family symmetries. We also consider the phenomenology of charged scalars in
these models. Next we turn to the role of symmetries in the scalar sector. We
discuss the six symmetry-constrained scalar potentials and their extension into
the fermion sector. The vacuum structure of the scalar potential is analysed,
including a study of the vacuum stability conditions on the potential and its
renormalization-group improvement. The stability of the tree level minimum of
the scalar potential in connection with electric charge conservation and its
behaviour under CP is analysed. The question of CP violation is addressed in
detail, including the cases of explicit CP violation and spontaneous CP
violation. We present a detailed study of weak basis invariants which are odd
under CP. A careful study of spontaneous CP violation is presented, including
an analysis of the conditions which have to be satisfied in order for a vacuum
to violate CP. We present minimal models of CP violation where the vacuum phase
is sufficient to generate a complex CKM matrix, which is at present a
requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results;
referee comments taken into account; submitted to Physics Report
Divergent Synthesis of Heparan Sulfate Oligosaccharides
Heparan
sulfates are implicated in a wide range of biological processes.
A major challenge in deciphering their structure and activity relationship
is the synthetic difficulties to access diverse heparan sulfate oligosaccharides
with well-defined sulfation patterns. In order to expedite the synthesis,
a divergent synthetic strategy was developed. By integrating chemical
synthesis and two types of <i>O</i>-sulfo transferases,
seven different hexasaccharides were obtained from a single hexasaccharide
precursor. This approach combined the flexibility of chemical synthesis
with the selectivity of enzyme-catalyzed sulfations, thus simplifying
the overall synthetic operations. In an attempt to establish structure
activity relationships of heparan sulfate binding with its receptor,
the synthesized oligosaccharides were incorporated onto a glycan microarray,
and their bindings with a growth factor FGF-2 were examined. The unique
combination of chemical and enzymatic approaches expanded the capability
of oligosaccharide synthesis. In addition, the well-defined heparan
sulfate structures helped shine light on the fine substrate specificities
of biosynthetic enzymes and confirm the potential sequence of enzymatic
reactions in biosynthesis