27 research outputs found

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research

    Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection

    Get PDF
    Connexins are widely distributed proteins in the body that are crucially important for heart and brain function. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localisation at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodelling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injury as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissue following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection

    Pharmacological modulation of connexin-formed channels in cardiac pathophysiology

    No full text
    Coordinated electrical activity in the heart is supported by gap junction channels located at the intercalated discs of cardiomyocytes. Impaired gap junctional communication between neighbouring cardiomyocytes contributes to the development of re-entry arrhythmias after myocardial ischaemia. Current antiarrhythmic therapy is hampered by a lack of efficiency and side effects, creating the need for a new generation of drugs. In this review, we focus on compounds that increase gap junctional communication, thereby increasing the conduction velocity and decreasing the risk of arrhythmias. Some of these compounds also inhibit connexin 43 (Cx43) hemichannels, thereby limiting adenosine triphosphate loss and volume overload following ischaemia/reperfusion, thus potentially increasing the survival of cardiomyocytes. The compounds discussed in this review are: (i) antiarrythmic peptide (AAP), AAP10, ZP123; (ii) GAP-134; (iii) RXP-E; and (vi) the Cx mimetic peptides Gap 26 and Gap 27. None of these compounds have effects on Na+, Ca2+ and K+ channels, and therefore have no proarrhythmic activity associated with currently available antiarrhythmic drugs. GAP-134, RXP-E, Gap 26 and Gap 27 are pharmalogical agents with a favorable clinical safety profile, as already confirmed in phase I clinical trials for GAP-134. These agents show an excellent promise for treatment of arrhythmias in patients with ischaemic cardiomyopathy
    corecore