384 research outputs found

    Spin- and charge-density oscillations in spin chains and quantum wires

    Full text link
    We analyze the spin- and charge-density oscillations near impurities in spin chains and quantum wires. These so-called Friedel oscillations give detailed information about the impurity and also about the interactions in the system. The temperature dependence of these oscillations explicitly shows the renormalization of backscattering and conductivity, which we analyze for a number of different impurity models. We are also able to analyze screening effects in one dimension. The relation to the Kondo effect and experimental consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/density-osc.pd

    Small Fermi surface in the one-dimensional Kondo lattice model

    Get PDF
    We study the one-dimensional Kondo lattice model through the density matrix renormalization group (DMRG). Our results for the spin correlation function indicate the presence of a small Fermi surface in large portions of the phase diagram, in contrast to some previous studies that used the same technique. We argue that the discrepancy is due to the open boundary conditions, which introduce strong charge perturbations that strongly affect the spin Friedel oscillations.Comment: 5 pages, 7 figure

    Spin Stiffness of Mesoscopic Quantum Antiferromagnets

    Full text link
    We study the spin stiffness of a one-dimensional quantum antiferromagnet in the whole range of system sizes LL and temperatures TT. We show that for integer and half-odd integer spin case the stiffness differs fundamentally in its LL and TT dependence, and that in the latter case the stiffness exhibits a striking dependence on the parity of the number of sites. Integer spin chains are treated in terms of the non-linear sigma model, while half-odd integer spin chains are discussed in a renormalization group approach leading to a Luttinger liquid with Aharonov-Bohm type boundary conditions.Comment: 12 pages, LaTe

    Interacting one dimensional electron gas with open boundaries

    Full text link
    We discuss the properties of interacting electrons on a finite chain with open boundary conditions. We extend the Haldane Luttinger liquid description to these systems and study how the presence of the boundaries modifies various correlation functions. In view of possible experimental applications to quantum wires, we analyse how tunneling measurements can reveal the underlying Luttinger liquid properties. The two terminal conductance is calculated. We also point out possible applications to quasi one dimensional materials and study the effects of magnetic impurities.Comment: 38 pages, ReVTeX, 7 figures (available upon request

    Luttinger model approach to interacting one-dimensional fermions in a harmonic trap

    Full text link
    A model of interacting one--dimensional fermions confined to a harmonic trap is proposed. The model is treated analytically to all orders of the coupling constant by a method analogous to that used for the Luttinger model. As a first application, the particle density is evaluated and the behavior of Friedel oscillations under the influence of interactions is studied. It is found that attractive interactions tend to suppress the Friedel oscillations while strong repulsive interactions enhance the Friedel oscillations significantly. The momentum distribution function and the relation of the model interaction to realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added and corrected references, new eq. (53), corrected typos, accepted for PR

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    One-dimensional spin-1/2 Heisenberg antiferromagnet in a weak external magnetic field

    Full text link
    The one dimensional spin-1/2 Heisenberg antiferromagnet in a weak magnetic field h is studied using the bosonization method. We derive a set of renormalization group equations. The fixed point is reached when the field is scaled to the value at which the system is quarter-filled. As the magnetic field varies, a continuum line of fixed points is formed. We compute the uniform longitudinal susceptibility χz(h)\chi_z(h). The singular behavior of χz(h)\chi_z(h) as h→0h\to 0 is found to be contained in 1/ln⁡(ho/h)1/\ln(h_o/h) with hoh_o a non-universal constant. The spin-spin correlations in the magnetic field are calculated.Comment: 5 pages, 1 figure, published on PR

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore