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Small Fermi surface in the one-dimensional Kondo lattice model

J. C. Xavier[] E. Novais,[] and E. Mirandalf|
Instituto de Fisica Gleb Wataghin, Unicamp, Caiza Postal 6165, 13083-970 Campinas, Sdo Paulo, Brazil
(Dated: 13th December 2013)

We study the one-dimensional Kondo lattice model through the density matrix renormalization
group (DMRG). Our results for the spin correlation function indicate the presence of a small Fermi
surface in large portions of the phase diagram, in contrast to some previous studies that used the
same technique. We argue that the discrepancy is due to the open boundary conditions, which
introduce strong charge perturbations that strongly affect the spin Friedel oscillations.

PACS numbers: 75.10.-b, 71.10.Pm, 71.10.Hf

Several uncertainties still exist in our Lﬂnderstanding
of the physics of heavy fermion materials.# The impor-
tance of solving these uncertainties has become even more
pressing as we attempt to understand the anomalous be-
havior observed in the vicinity of the clean antiferromag-
netic quantum critical pointH The two major scenarios
take radically different points of view. In the first one,
conduction electrons are assumed to acquire their pecu-
liar dynamics through an essentially perturbative cou-
pling to theg w critical modes of the antiferromagnetic
background B Alternatively, the starting point is taken
to be the strong coupling of the conduction electrons and
the localized spins to form singlets, as in the single impu-
rity Kondo problem. The nature of the quantum critical
point is then linked to a non-trivial competition between
the local dynamics aﬁd the long wavelength antiferro-
magnetic fluctuations.

One of the key assumptions of the second approach is
the presence of a large Fermi surface (FS), namely one
whose volume is given by including the localized spins in
the count

2V
—F% =n+1.
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Behind this assumption lies a deep connectionH be-
tween the Friedel sum rule of the single impurity Kondo
probleml and Luttinger’s theorem for the FS volume of
a system of interacting fermionsH The inclusion of the
localized electron in the count is natural within an An-
derson lattice model description at weak coupling but be-
comes doubtful at strong coupling where the Kondo lat-
tice Hamiltonian is the effective low-energy theory. How-
ever, topological_ arguments have been used, in onell as
well as in highertd dimensions, to show that indeed neu-
tral gapless-excitations must exist at a k-vector spanning
a large FS.EJ Furthermore, numerical studies of the one-
dimensional Kondo latti odel have also pointed to the
presence of a large FSEEA In this paper, we show that
a more careful analysis of the numerical evidence casts
serious doubts on these conclusions and leaves open the
question of the size of the Fermi surface in heavy fermion
systems.

We considered the one-dimensional S = % Kondo lat-

tice Hamiltonian with L sites
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where cj, annihilates a conduction electron in site j with
spin projection o, S; is a localized spin % operator and
s; = %Zaﬂ c;)aaagcjﬁ is the conduction electron spin
density operator. J > 0 is the Kondo coupling constant
between the conduction electrons and the local moments
and the hopping amplitude ¢ is set to unity to fix the en-
ergy scale. We treated the model with the ity matrix
renormalization group (DMRG) techniquetdt with open
boundary conditions. We used the finite-size algorithm
for sizes up to L = 120 keeping up to m = 400 states
per block. The discarded weight was typically about
1072 — 108 in the final sweep.

There is compelling evidenceﬁ that the one-
dimensional Kondo lattice model away from half-filling
is a Tomonaga-Luttinger (TL) liquid.Ed TL liquids with
periodic boundary conditions, have charge and spin cor-
relation functions given asymptotically by

(0n (0)on (z)) = (75;;2 +A1mz(1(2%1x)
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where K, is a non-universal correlation exponent and
kr is the Fermi momentum. Besides, local charge and
spin perturbations, such as introduced by impurities or

boundaries, lead to corresponding Friedel illati
which in the case of a TL liquid take the formﬁﬁﬁ'@?@

cos (2kpx) cos (4kpx)
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We first show our results for the total spin correlation
function ¢ (j,k) = (ST - ST), where ST = S; +s;. Since
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Figure 1: Spin-spin correlation function ¢ (I) for n = 2, L =
60 and J = 0.35 (main) and J = 5 (inset). The solid lines
correspond to lattice averages, whereas the dashed lines are
obtained with the two sites equidistant from the chain center
(see text).

we use open boundary conditions, translational invari-
ance is lost and ¢ (j, k) depends on both j and k. We
present results obtained by two different methods. In
the first one (dashed lines in Fig. [), c(I = |j — k) was
obtained by taking j and k at the same distance (within a
lattice spacing) from the center of the chain. We call this
the central value of ¢(I). In the second one (solid lines
in Fig. EI), we averaged over all pairs of sites separated
by the distance | = |j — k|. We will call it the average
value of ¢ (). If the boundary perturbation has a negligi-
ble effect on the spin-spin correlation function, then the
two methods should yield similar results and we can have
confidence that we have obtained the bulk value of ¢ (1).
This is indeed what is observed for the density n = %
with L = 60, as seen in Fig. []. The paramagnetic (PM)
and ferromagnetic (FM) phasest? can be easily discerned
from the long distance behavior of ¢ (I): for J < J., the
envelope of ¢ (1) tends to zero (main plots in Fig. ) and
for J > J. it tends to the magnetization squared (inset
of Fig. ). The critical value is J, ~ 1.2 for n = 2. The
ferromagnetism was also checked directly from the total
spin of the ground state. The PM phase exhibits well de-
veloped Friedel oscillations due to the open boundaries.
In Fig. B(a), we show the spin structure factor S (¢) =
1 Dok ¢4k ¢ (§, k) corresponding to Fig. . Because of
the weak influence of the boundaries, this is very close to
the Fourier transform of ¢ (1). Whereas S (¢) is maximum
at ¢ = 0 in the FM phase (with LS (0) = ST (ST + 1) @
in the PM phase S (q) is peaked at gs = 7n at n = %
This result does not seem to be due to finite size effects.
Indeed, the structure factor peak gets sharper and more
pronounced as one goes from L = 60 to L = 120. This is

shown in Fig. (b), for the two densities n = 2 and n = 2
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Figure 2: Spin structure factor S(q): (a) n = 2, same param-
eters as in Fig. ﬂ; (b) n =2 and n = % for both L = 60 and
L =120 (all at J = 0.35).

at J = 0.35. This is strong evidence for a small Fermi
surface with 2krp = ¢, :@T@, in sharp contrast to what
was previously reported. Note a very small feature
at wave vector 27n, which, however, does not increase
with the system size and is below the accuracy of the
DMRG. We also calculated the spin structure factor at
several other density values, as shown in Fig. fj(a). As
finite size effects appear to be negligible, we have kept to
smaller chain sizes (L = 40 or 30). In all cases, there was
good agreement between central and average values of
¢(1). All the results point to the presence of a small FS.
In order to understand the origin of this discrepancy we
re-examined the parameter ranges studied in Refs. [L1] and
@. As we will see, their results occur at large values of
J (J 2 1), where strong boundary charge perturbations
mask the true bulk behavior of spin correlations. This
is diagnosed by very different values of the average and
the central ¢ (1). On the other hand, when J < 1 as in
all cases seen above, the boundaries induce only a weak
charge disturbance. As a result, central and average c (1)
are the same, and the spin correlation function oscillates
at 2kp = qs = mn.

In Fig. fJ(b), we present the local density (n;) and
the squared z-component of the total spin <(S’JTZ)2> ver-

sus distance for the density n = g and J = 2.5. The
charge Friedel oscillations induced by th n bound-
aries are the same as found previouslyttd and the
squared z-component is anti-correlated with the charge.
This strong charge disturbance is seen at other densities
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Figure 3: (a) S(q) vs. momentum for several densities. In all
cases, J = 0.5 and L = 30, except for n = %, where L = 40.

(b) <(SJTZ)2> and (n;) vs. distance for L = 70, J = 2.5, and
n = 2. Peaks of <(S;‘FZ)2> track the valleys of (n;).
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Figure 4: |N (¢)| vs. momentum for several densities. Cou-
pling constants are indicated and lattice sizes are, from top
to bottom, L = 60, 40, 40, 60, and 60, respectively.

when J 2 1 but is suppressed as J is decreased. This
can be seen in Fig. E, where we show the magnitude of
the Fourier transform N (q) = £ _. "% ({n;) —n) ver-
sus momentum for several densities and coupling con-
stants. Furthermore, when J is decreased, the charge
Friedel oscillation peak moves from ¢. = 27 (1 —n) to
gc = 2kp = mn. We note that a peak at g. = 27 (1 — n)
(mod 27) cannot distinguish between a small FS, with
4kp = 2mn, and a large one, with 4k} = 27 (1 4+ n) (we
denote a large Fermi vector by a star). For this rea-
son, we cannot use the charge structure factor to deter-
mine the size of the Fermi surface. Even when the peaks
are not sharp, the oscillations are still quite well defined,
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Figure 5: (a) (n;) vs. distance for L =40, J = 0.5 and n = 5.
(b) Spin-spin correlation function for n = 3 with J = 0.5 and
L = 40. Solid and dashed lines correspond to average and
central ¢(1), as in Fig. ﬂ

as shown in Fig. Eéa) for n = % (compare the scales of
Fig. E(a) and Fig. B(b)).

The presence of strong boundary charge disturbances
leads to different behaviors of the central and the aver-
age spin correlation functions. This connection is made
apparent in Figs. f{(b) and [J(a), which show average and
central c(l) forn = 3, J = 05and n = 3, J = 1.5,
respectively. At n = %, J = 0.5, charge oscillations are
small and the average and central ¢ (l) are almost the
same. On the other hand, the large charge peak that
occurs at n = 1, J = 1.5 (Fig. H) leads to quite differ-
ent values of the average and central ¢ (/). This is also
reflected in the spin structure factor, which shows only
broad ill-defined features, as plotted in Fig. f(b). This
is the key to understanding the discrﬁﬁcy between our
results and the ones of Shibata et alE2’

In order to observe spin oscillations, Shibata et. al
applied a small local field at the chain ends and mea-
sured (ST.). We obtained similar spin oscillations for

<(SJTZ)2>, but with half the period, without any field.

The origin of the latter structure is clear: local spin fluc-
tuations are determined by the charge Friedel oscillations
(see Fig. [f(b)). Furthermore, this also shows that the sys-
tem is rendered more polarizable by the boundary per-

turbation at the peaks of <(sz)2>, accounting for the

oscillations of <SJTZ> when a magnetic field is applied at
the endpoints. Thus, the response of the system under
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Figure 6: (a) Average (solid) and central (dashed) c(l) for
n = 2 with J = 1.5 and L = 60, as in Fig. ﬂ (b) S(q) vs.
momentum. The densities are indicated. The parameters are
the same as in Figs. f§ and { for these densities.

the application of boundary magnetic fields, as was done
in Refs. EI and @, is strongly perturbed by the presence
of open boundaries and cannot by itself be used to deter-
mine the size of the FS. In that case, the spin oscillations
are inextricably linked to the charge ones by ¢s = ¢./2.
Additional confidence in this picture can be gained by the
inspection of Figs. 2 and 4 of Ref. @, where an increase of
the charge peak is accompanied by an increase of the spin
peak. Spin Friedel oscillations should ideally be studied
by applying a small local magnetic perturbation in the
absence of any charge perturbation. We conclude that,
based on the available evidence, it is impossible to de-
termine whether the system has a large or a small Fermi
surface for J 2 1.

We can envisage three alternatives to try to overcome
this difficulty. The first one would be to use larger bound-
ary fields so that the spin perturbation can surpass the
charge one. However, it is not clear that this regime is
attainable without drastically changing the nature of the
ground state. A second way would be to work with pe-
riodic boundary conditions and a magnetic field applied
at one site only, thus eliminating boundary charge per-
turbations while keeping spin ones. However, this is not
particularly appealing because the DMRG loses accuracy
with periodic boundary conditions. Finally, by going to
larger systems one can have access to the true bulk be-
havior. Without these further studies, the size of the
Fermi surface at J 2 1 remains undetermined.

We have also calculated the spin correlations between
localized spins only and conduction electrons only. In

01} \ | | @)
ol I / :
C(I) / total
-0.1 | ---- localized T
/ ——— conduction
-0.2 : '
0 6 | 12
' (b)
——— conducton
03t total T
0ot
c(l)

-0.3 '
0

Figure 7: (a) The average spin-spin correlation function vs.
distance for the total, localized and the conduction electron
spins in a chain of L = 42 sites, with J = 1.0 at half filling.
(b) Same as (a) but for a chain of L = 60 sites, J = 0.35, and
n= % Here, the correlations between localized spins are not

shown. Both in (a) and (b), only the first few sites are shown.

Fig. f](a) and (b) we present these correlations together
with the total spin-spin correlations for densities n = 1
andn = i, respectively. In Fig. ﬁ(b), the correlations be-
tween localized spins are not shown since they differ very
little from the total spin ones. As expected all three func-
tions have the same period, differing only in amplitude.
It is also clear that the conduction electron contribution
increases with the density. Note also that the spin corre-
lations at half filling (Fig. fi(a)) decay much faﬁa‘cham
at other fillings, due the presence of a spin gap.&

Let us now discuss these results. The theorem of Ref. H
guarantees that, provided there is either unbroken time
reversal or parity symmetries in the ground state, the
one-dimensional Kondo lattice has gapless excitations at
2k} = m(1 —mn). This should be valid within the PM
phase. The conventional Luttinger liquid phenomenol-
ogy then tells us that these are collective spin and/or
charge bosonic excitations with a linear dispersion with
respect to deviations from this wave vector. They lead
to the characteristic oscillatory behavior of Egs. ([l) and
(E) and the corresponding peaks in the spin and charge
structure factors. Of course, the theorem does not for-
bid the appearance of gapless excitations at other wave
vectors such as 2kp = mn. Together with our results,
this would seem to indicate that the spectral weight at
2k} is rather small in the range J < 1, most of it being
concentrated at 2kp.

The conventional wisdom about heavy fermion systems



is based on the competition between the local Kondo ef-
fect and the inter-site Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction. Although this dichotomy is con-
troversial in one dimension, it is tempting to use it as
a general guide. The size of the compensating Kondo
cloud around a single localized moment has been ar-
gued to be exponentially large ae'/?’ where a is the
lattice spacing and p is the density of states at the Fermi
level B4 with typical values on the order of 1 um. Thus,
it would increase as J is decreased towards the physi-
cally relevant region J < 1, where we observe the peak
at ¢s = 2krp = mn. This might lead us to think that
we should work with system sizes that are at least as
large as the Kondo compensating cloud in order to ob-
serve features characteristic of a large FS. However, the
fact that the peak at 2kp becomes sharper and more pro-
nounced as L is increased (Fig. P(b)) casts doubt on this
naive expectation. Moreover, even if the true thermody-
namic limit of the spin correlations do indeed oscillate
at 2ky = w(1+n), our results show that perhaps at
the physically relevant distance scale the important wave
vector is actually 2krp = wn. For example, neutron scat-
tering experiments are limited by the coherence length
of the neutron beam and may not be able to probe large
distances such as ae'/?’7. Other probes of the FS size,
such as quantum oscillations, are limited by the electron

mean free path, which would also have to exceed this
length scale to access the asymptotic limit. Thus, our
results put stringent limits on the observability of a large
FS in heavy fermion systems. Besides, the presence of
disorder and/or inelastic scattering may render the small
FS size the only relevant length scale in real systems.

In conclusion, we have found clear signatures of a small
Fermi surface in the spin correlation function of the one-
dimensional Kondo lattice at small values of the Kondo
coupling constant (J < 1). The discrepancy with previ-
ous results in the literature that had argued for a large
Fermi surface in this system is ascribed to the presence
of large edge perturbations introduced by the use of open
boundary conditions. These perturbations are larger for
large coupling constants (J 2 1), which hinders the in-
vestigation of the Fermi surface size in this region. Even
if the true asymptotic spin correlations are peaked at the
large Fermi surface wave vector, the relevant oscillation
period in many cases of interest may be set by the size
of the small Fermi surface.
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