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We study the one-dimensional Kondo latti
e model through the density matrix renormalization

group (DMRG). Our results for the spin 
orrelation fun
tion indi
ate the presen
e of a small Fermi

surfa
e in large portions of the phase diagram, in 
ontrast to some previous studies that used the

same te
hnique. We argue that the dis
repan
y is due to the open boundary 
onditions, whi
h

introdu
e strong 
harge perturbations that strongly a�e
t the spin Friedel os
illations.

PACS numbers: 75.10.-b, 71.10.Pm, 71.10.Hf

Several un
ertainties still exist in our understanding

of the physi
s of heavy fermion materials.

1

The impor-

tan
e of solving these un
ertainties has be
ome even more

pressing as we attempt to understand the anomalous be-

havior observed in the vi
inity of the 
lean antiferromag-

neti
 quantum 
riti
al point.

2

The two major s
enarios

take radi
ally di�erent points of view. In the �rst one,


ondu
tion ele
trons are assumed to a
quire their pe
u-

liar dynami
s through an essentially perturbative 
ou-

pling to the slow 
riti
al modes of the antiferromagneti


ba
kground.

3,4

Alternatively, the starting point is taken

to be the strong 
oupling of the 
ondu
tion ele
trons and

the lo
alized spins to form singlets, as in the single impu-

rity Kondo problem. The nature of the quantum 
riti
al

point is then linked to a non-trivial 
ompetition between

the lo
al dynami
s and the long wavelength antiferro-

magneti
 �u
tuations.

5

One of the key assumptions of the se
ond approa
h is

the presen
e of a large Fermi surfa
e (FS), namely one

whose volume is given by in
luding the lo
alized spins in

the 
ount

2V ∗
FS

(2π)
D

= n + 1.

Behind this assumption lies a deep 
onne
tion

6

be-

tween the Friedel sum rule of the single impurity Kondo

problem

7

and Luttinger's theorem for the FS volume of

a system of intera
ting fermions.

8

The in
lusion of the

lo
alized ele
tron in the 
ount is natural within an An-

derson latti
e model des
ription at weak 
oupling but be-


omes doubtful at strong 
oupling where the Kondo lat-

ti
e Hamiltonian is the e�e
tive low-energy theory. How-

ever, topologi
al arguments have been used, in one

9

as

well as in higher

10

dimensions, to show that indeed neu-

tral gapless ex
itations must exist at a k-ve
tor spanning

a large FS.

23

Furthermore, numeri
al studies of the one-

dimensional Kondo latti
e model have also pointed to the

presen
e of a large FS.

11,12

In this paper, we show that

a more 
areful analysis of the numeri
al eviden
e 
asts

serious doubts on these 
on
lusions and leaves open the

question of the size of the Fermi surfa
e in heavy fermion

systems.

We 
onsidered the one-dimensional S = 1
2 Kondo lat-

ti
e Hamiltonian with L sites

H = −t

L−1
∑

j=1,σ

c†j,σcj+1,σ + J

L
∑

j=1

Sj · sj

where cjσ annihilates a 
ondu
tion ele
tron in site j with
spin proje
tion σ, Sj is a lo
alized spin

1
2 operator and

sj = 1
2

∑

αβ c†j,ασαβcj,β is the 
ondu
tion ele
tron spin

density operator. J > 0 is the Kondo 
oupling 
onstant

between the 
ondu
tion ele
trons and the lo
al moments

and the hopping amplitude t is set to unity to �x the en-
ergy s
ale. We treated the model with the density matrix

renormalization group (DMRG) te
hnique

13,14

with open

boundary 
onditions. We used the �nite-size algorithm

for sizes up to L = 120 keeping up to m = 400 states

per blo
k. The dis
arded weight was typi
ally about

10−5 − 10−8
in the �nal sweep.

There is 
ompelling eviden
e

15

that the one-

dimensional Kondo latti
e model away from half-�lling

is a Tomonaga-Luttinger (TL) liquid.

16

TL liquids with

periodi
 boundary 
onditions, have 
harge and spin 
or-

relation fun
tions given asymptoti
ally by

〈δn (0) δn (x)〉 =
Kρ

(πx)
2 + A1

cos (2kF x)

xKρ+1

+ A2
cos (4kF x)

x4Kρ

, (1)

〈S (0) · S (x)〉 =
1

(πx)
2 + B1

cos (2kF x)

xKρ+1
, (2)

where Kρ is a non-universal 
orrelation exponent and

kF is the Fermi momentum. Besides, lo
al 
harge and

spin perturbations, su
h as introdu
ed by impurities or

boundaries, lead to 
orresponding Friedel os
illations,

whi
h in the 
ase of a TL liquid take the form

11,12,17,18,19

〈δn (x)〉 = C1
cos (2kF x)

x(Kρ+1)/2
+ C2

cos (4kF x)

x2Kρ

,

〈δSz (x)〉 = D1
cos (2kF x)

xKρ

.

We �rst show our results for the total spin 
orrelation

fun
tion c (j, k) =
〈

S
T
j · ST

k

〉

, where S
T
j = Sj + sj. Sin
e
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Figure 1: Spin-spin 
orrelation fun
tion c (l) for n = 2

5
, L =

60 and J = 0.35 (main) and J = 5 (inset). The solid lines


orrespond to latti
e averages, whereas the dashed lines are

obtained with the two sites equidistant from the 
hain 
enter

(see text).

we use open boundary 
onditions, translational invari-

an
e is lost and c (j, k) depends on both j and k. We

present results obtained by two di�erent methods. In

the �rst one (dashed lines in Fig. 1), c (l = |j − k|) was
obtained by taking j and k at the same distan
e (within a

latti
e spa
ing) from the 
enter of the 
hain. We 
all this

the 
entral value of c (l). In the se
ond one (solid lines

in Fig. 1), we averaged over all pairs of sites separated

by the distan
e l = |j − k|. We will 
all it the average

value of c (l). If the boundary perturbation has a negligi-
ble e�e
t on the spin-spin 
orrelation fun
tion, then the

two methods should yield similar results and we 
an have


on�den
e that we have obtained the bulk value of c (l).
This is indeed what is observed for the density n = 2

5
with L = 60, as seen in Fig. 1. The paramagneti
 (PM)

and ferromagneti
 (FM) phases

15


an be easily dis
erned

from the long distan
e behavior of c (l): for J < Jc, the

envelope of c (l) tends to zero (main plots in Fig. 1) and

for J > Jc it tends to the magnetization squared (inset

of Fig. 1). The 
riti
al value is Jc ≈ 1.2 for n = 2
5 . The

ferromagnetism was also 
he
ked dire
tly from the total

spin of the ground state. The PM phase exhibits well de-

veloped Friedel os
illations due to the open boundaries.

In Fig. 2(a), we show the spin stru
ture fa
tor S (q) =
1
L

∑

j,k eiq(j−k)c (j, k) 
orresponding to Fig. 1. Be
ause of
the weak in�uen
e of the boundaries, this is very 
lose to

the Fourier transform of c (l). Whereas S (q) is maximum
at q = 0 in the FM phase (with LS (0) = ST

(

ST + 1
)

),

in the PM phase S (q) is peaked at qs = πn at n = 2
5 .

24

This result does not seem to be due to �nite size e�e
ts.

Indeed, the stru
ture fa
tor peak gets sharper and more

pronoun
ed as one goes from L = 60 to L = 120. This is
shown in Fig. 2(b), for the two densities n = 2

5 and n = 4
5

0 0.5 1
0

2

4 J=0.35
J=5.0

0 0.5 1
0

5

10
 L=60
L=120  

q/π

q/π

S(q)

S(q)

(a)

(b)

n=0.4 n=0.8

Figure 2: Spin stru
ture fa
tor S(q): (a) n = 2

5
, same param-

eters as in Fig. 1; (b) n = 2

5
and n = 4

5
for both L = 60 and

L = 120 (all at J = 0.35).

at J = 0.35. This is strong eviden
e for a small Fermi

surfa
e with 2kF = qs = πn, in sharp 
ontrast to what

was previously reported.

11,12

Note a very small feature

at wave ve
tor 2πn, whi
h, however, does not in
rease
with the system size and is below the a

ura
y of the

DMRG. We also 
al
ulated the spin stru
ture fa
tor at

several other density values, as shown in Fig. 3(a). As

�nite size e�e
ts appear to be negligible, we have kept to

smaller 
hain sizes (L = 40 or 30). In all 
ases, there was

good agreement between 
entral and average values of

c (l). All the results point to the presen
e of a small FS.

In order to understand the origin of this dis
repan
y we

re-examined the parameter ranges studied in Refs. 11 and

12. As we will see, their results o

ur at large values of

J (J & 1), where strong boundary 
harge perturbations

mask the true bulk behavior of spin 
orrelations. This

is diagnosed by very di�erent values of the average and

the 
entral c (l). On the other hand, when J . 1 as in

all 
ases seen above, the boundaries indu
e only a weak


harge disturban
e. As a result, 
entral and average c (l)
are the same, and the spin 
orrelation fun
tion os
illates

at 2kF = qs = πn.

In Fig. 3(b), we present the lo
al density 〈nj〉 and

the squared z-
omponent of the total spin
〈

(

ST
jz

)2
〉

ver-

sus distan
e for the density n = 6
7 and J = 2.5. The


harge Friedel os
illations indu
ed by the open bound-

aries are the same as found previously

11,12

and the

squared z-
omponent is anti-
orrelated with the 
harge.

This strong 
harge disturban
e is seen at other densities
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Figure 3: (a) S(q) vs. momentum for several densities. In all


ases, J = 0.5 and L = 30, ex
ept for n = 1

2
, where L = 40.

(b)

〈

(

ST
jz

)2
〉

and 〈nj〉 vs. distan
e for L = 70, J = 2.5, and

n = 6

7
. Peaks of

〈

(

ST
jz

)2
〉

tra
k the valleys of 〈nj〉.

0 0.5 1
0

0.03

0.06
n=4/5 J=1.5
n=3/4 J=1.0
n=1/2 J=0.5
n=2/5 J=0.35
n=4/5 J=0.35|N(q)|

q/π
Figure 4: |N (q)| vs. momentum for several densities. Cou-

pling 
onstants are indi
ated and latti
e sizes are, from top

to bottom, L = 60, 40, 40, 60, and 60, respe
tively.

when J & 1 but is suppressed as J is de
reased. This


an be seen in Fig. 4, where we show the magnitude of

the Fourier transform N (q) = 1
L

∑

j eiqj (〈nj〉 − n) ver-

sus momentum for several densities and 
oupling 
on-

stants. Furthermore, when J is de
reased, the 
harge

Friedel os
illation peak moves from qc = 2π (1 − n) to

qc = 2kF = πn. We note that a peak at qc = 2π (1 − n)
(mod 2π) 
annot distinguish between a small FS, with

4kF = 2πn, and a large one, with 4k∗
F = 2π (1 + n) (we

denote a large Fermi ve
tor by a star). For this rea-

son, we 
annot use the 
harge stru
ture fa
tor to deter-

mine the size of the Fermi surfa
e. Even when the peaks

are not sharp, the os
illations are still quite well de�ned,

0 10 20 30 40

0.50

0.52

0 10 20 30 40
−0.3

−0.1

0.1

<nj>

j

l

c(l)

(a)

(b)

Figure 5: (a) 〈nj〉 vs. distan
e for L = 40, J = 0.5 and n = 1

2
.

(b) Spin-spin 
orrelation fun
tion for n = 1

2
with J = 0.5 and

L = 40. Solid and dashed lines 
orrespond to average and


entral c(l), as in Fig. 1.

as shown in Fig. 5(a) for n = 1
2 (
ompare the s
ales of

Fig. 5(a) and Fig. 3(b)).

The presen
e of strong boundary 
harge disturban
es

leads to di�erent behaviors of the 
entral and the aver-

age spin 
orrelation fun
tions. This 
onne
tion is made

apparent in Figs. 5(b) and 6(a), whi
h show average and


entral c (l) for n = 1
2 , J = 0.5 and n = 4

5 , J = 1.5,

respe
tively. At n = 1
2 , J = 0.5, 
harge os
illations are

small and the average and 
entral c (l) are almost the

same. On the other hand, the large 
harge peak that

o

urs at n = 4
5 , J = 1.5 (Fig. 4) leads to quite di�er-

ent values of the average and 
entral c (l). This is also

re�e
ted in the spin stru
ture fa
tor, whi
h shows only

broad ill-de�ned features, as plotted in Fig. 6(b). This

is the key to understanding the dis
repan
y between our

results and the ones of Shibata et al.

11,12

In order to observe spin os
illations, Shibata et. al

applied a small lo
al �eld at the 
hain ends and mea-

sured

〈

ST
jz

〉

. We obtained similar spin os
illations for

〈

(

ST
jz

)2
〉

, but with half the period, without any �eld.

The origin of the latter stru
ture is 
lear: lo
al spin �u
-

tuations are determined by the 
harge Friedel os
illations

(see Fig. 3(b)). Furthermore, this also shows that the sys-

tem is rendered more polarizable by the boundary per-

turbation at the peaks of

〈

(

ST
jz

)2
〉

, a

ounting for the

os
illations of

〈

ST
jz

〉

when a magneti
 �eld is applied at

the endpoints. Thus, the response of the system under
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Figure 6: (a) Average (solid) and 
entral (dashed) c(l) for

n = 4

5
with J = 1.5 and L = 60, as in Fig. 1. (b) S (q) vs.

momentum. The densities are indi
ated. The parameters are

the same as in Figs. 3 and 4 for these densities.

the appli
ation of boundary magneti
 �elds, as was done

in Refs. 11 and 12, is strongly perturbed by the presen
e

of open boundaries and 
annot by itself be used to deter-

mine the size of the FS. In that 
ase, the spin os
illations

are inextri
ably linked to the 
harge ones by qs = qc/2.
Additional 
on�den
e in this pi
ture 
an be gained by the

inspe
tion of Figs. 2 and 4 of Ref. 11, where an in
rease of

the 
harge peak is a

ompanied by an in
rease of the spin

peak. Spin Friedel os
illations should ideally be studied

by applying a small lo
al magneti
 perturbation in the

absen
e of any 
harge perturbation. We 
on
lude that,

based on the available eviden
e, it is impossible to de-

termine whether the system has a large or a small Fermi

surfa
e for J & 1.
We 
an envisage three alternatives to try to over
ome

this di�
ulty. The �rst one would be to use larger bound-

ary �elds so that the spin perturbation 
an surpass the


harge one. However, it is not 
lear that this regime is

attainable without drasti
ally 
hanging the nature of the

ground state. A se
ond way would be to work with pe-

riodi
 boundary 
onditions and a magneti
 �eld applied

at one site only, thus eliminating boundary 
harge per-

turbations while keeping spin ones. However, this is not

parti
ularly appealing be
ause the DMRG loses a

ura
y

with periodi
 boundary 
onditions. Finally, by going to

larger systems one 
an have a

ess to the true bulk be-

havior. Without these further studies, the size of the

Fermi surfa
e at J & 1 remains undetermined.

We have also 
al
ulated the spin 
orrelations between

lo
alized spins only and 
ondu
tion ele
trons only. In

0 6 12
−0.2

−0.1

0

0.1

total
localized
conduction

0 10 20
−0.3

0

0.3
conducton
total

(a)

(b)

c(l)

c(l)

l

l

Figure 7: (a) The average spin-spin 
orrelation fun
tion vs.

distan
e for the total, lo
alized and the 
ondu
tion ele
tron

spins in a 
hain of L = 42 sites, with J = 1.0 at half �lling.

(b) Same as (a) but for a 
hain of L = 60 sites, J = 0.35, and
n = 2

5
. Here, the 
orrelations between lo
alized spins are not

shown. Both in (a) and (b), only the �rst few sites are shown.

Fig. 7(a) and (b) we present these 
orrelations together

with the total spin-spin 
orrelations for densities n = 1
and n = 1

4 , respe
tively. In Fig. 7(b), the 
orrelations be-

tween lo
alized spins are not shown sin
e they di�er very

little from the total spin ones. As expe
ted all three fun
-

tions have the same period, di�ering only in amplitude.

It is also 
lear that the 
ondu
tion ele
tron 
ontribution

in
reases with the density. Note also that the spin 
orre-

lations at half �lling (Fig. 7(a)) de
ay mu
h faster than

at other �llings, due the presen
e of a spin gap.

20,21

Let us now dis
uss these results. The theorem of Ref. 9

guarantees that, provided there is either unbroken time

reversal or parity symmetries in the ground state, the

one-dimensional Kondo latti
e has gapless ex
itations at

2k∗
F = π (1 − n) . This should be valid within the PM

phase. The 
onventional Luttinger liquid phenomenol-

ogy then tells us that these are 
olle
tive spin and/or


harge bosoni
 ex
itations with a linear dispersion with

respe
t to deviations from this wave ve
tor. They lead

to the 
hara
teristi
 os
illatory behavior of Eqs. (1) and

(2) and the 
orresponding peaks in the spin and 
harge

stru
ture fa
tors. Of 
ourse, the theorem does not for-

bid the appearan
e of gapless ex
itations at other wave

ve
tors su
h as 2kF = πn. Together with our results,

this would seem to indi
ate that the spe
tral weight at

2k∗
F is rather small in the range J . 1, most of it being


on
entrated at 2kF .

The 
onventional wisdom about heavy fermion systems



5

is based on the 
ompetition between the lo
al Kondo ef-

fe
t and the inter-site Ruderman-Kittel-Kasuya-Yosida

(RKKY) intera
tion. Although this di
hotomy is 
on-

troversial in one dimension, it is tempting to use it as

a general guide. The size of the 
ompensating Kondo


loud around a single lo
alized moment has been ar-

gued to be exponentially large a e1/ρJ
, where a is the

latti
e spa
ing and ρ is the density of states at the Fermi

level,

22

with typi
al values on the order of 1 µm. Thus,
it would in
rease as J is de
reased towards the physi-


ally relevant region J . 1, where we observe the peak

at qs = 2kF = πn. This might lead us to think that

we should work with system sizes that are at least as

large as the Kondo 
ompensating 
loud in order to ob-

serve features 
hara
teristi
 of a large FS. However, the

fa
t that the peak at 2kF be
omes sharper and more pro-

noun
ed as L is in
reased (Fig. 3(b)) 
asts doubt on this

naive expe
tation. Moreover, even if the true thermody-

nami
 limit of the spin 
orrelations do indeed os
illate

at 2k∗
F = π (1 + n), our results show that perhaps at

the physi
ally relevant distan
e s
ale the important wave

ve
tor is a
tually 2kF = πn. For example, neutron s
at-

tering experiments are limited by the 
oheren
e length

of the neutron beam and may not be able to probe large

distan
es su
h as a e1/ρJ
. Other probes of the FS size,

su
h as quantum os
illations, are limited by the ele
tron

mean free path, whi
h would also have to ex
eed this

length s
ale to a

ess the asymptoti
 limit. Thus, our

results put stringent limits on the observability of a large

FS in heavy fermion systems. Besides, the presen
e of

disorder and/or inelasti
 s
attering may render the small

FS size the only relevant length s
ale in real systems.

In 
on
lusion, we have found 
lear signatures of a small

Fermi surfa
e in the spin 
orrelation fun
tion of the one-

dimensional Kondo latti
e at small values of the Kondo


oupling 
onstant (J . 1). The dis
repan
y with previ-

ous results in the literature that had argued for a large

Fermi surfa
e in this system is as
ribed to the presen
e

of large edge perturbations introdu
ed by the use of open

boundary 
onditions. These perturbations are larger for

large 
oupling 
onstants (J & 1), whi
h hinders the in-

vestigation of the Fermi surfa
e size in this region. Even

if the true asymptoti
 spin 
orrelations are peaked at the

large Fermi surfa
e wave ve
tor, the relevant os
illation

period in many 
ases of interest may be set by the size

of the small Fermi surfa
e.
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