32 research outputs found

    Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life

    Get PDF
    Abstract: Background: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. Methods: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1β, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and β-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. Results: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. Conclusion: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter

    The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers

    Get PDF
    International audienceHere, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures

    Respiratory Inductance Plethysmography to Assess Fatigability during Repetitive Work

    Get PDF
    This work was supported by Project OPERATOR (NORTE01-0247-FEDER-045910), cofinanced by the ERDF—European Regional Development Fund through the North Portugal Regional Operational Program and Lisbon Regional Operational Program and by the Portuguese Foundation for Science and Technology, under the MIT Portugal Program (2019 Open Call for Flagship projects). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Cumulative fatigue during repetitive work is associated with occupational risk and productivity reduction. Usually, subjective measures or muscle activity are used for a cumulative evaluation; however, Industry 4.0 wearables allow overcoming the challenges observed in those methods. Thus, the aim of this study is to analyze alterations in respiratory inductance plethysmography (RIP) to measure the asynchrony between thorax and abdomen walls during repetitive work and its relationship with local fatigue. A total of 22 healthy participants (age: 27.0 ± 8.3 yrs; height: 1.72 ± 0.09 m; mass: 63.4 ± 12.9 kg) were recruited to perform a task that includes grabbing, moving, and placing a box in an upper and lower shelf. This task was repeated for 10 min in three trials with a fatigue protocol between them. Significant main effects were found from Baseline trial to the Fatigue trials (p < 0.001) for both RIP correlation and phase synchrony. Similar results were found for the activation amplitude of agonist muscle (p < 0.001), and to the muscle acting mainly as a joint stabilizer (p < 0.001). The latter showed a significant effect in predicting both RIP correlation and phase synchronization. Both RIP correlation and phase synchronization can be used for an overall fatigue assessment during repetitive work.publishersversionpublishe

    Antibodies for CFTR studies.

    Get PDF
    For most expression studies focusing on the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, sensitive and specific antibodies (Abs) are critically needed. Several Abs have been produced commercially or by research laboratories for CFTR detection in both cell lines with heterologous or endogenous expression and native cells/tissues. Here, we review the applicability of most Abs currently in use in CF research for the biochemical and/or immunocytochemical detection of CFTR

    Immunohistochemistry of CFTR in native tissues and primary epithelial cell cultures.

    Get PDF
    Studies on CFTR protein expression and localization in native tissues or in primary cultures of human epithelial cells are scarce due to the intrinsic instability of this protein, its low expression in most tissues and also to technical difficulties. However, such data are of the highest importance to understand the pathophysiology of CF. The purpose of this article is to outline several assays for the characterization of primary epithelial cultures and to review different CFTR immunostaining protocols
    corecore