52 research outputs found

    Crop Updates 2002 - Pulse Research and Industry Development in Western Australia

    Get PDF
    This session covers seventy one papers from different authors: 1. 2001 PULSE INDUSTRY HIGHLIGHTS CONTRIBUTORS BACKGROUND 2001 REGIONAL ROUNDUP 2. Northern Agricultural Region, M. Harries, Department of Agriculture 3. Central Agricultural Region, R. French and I. Pritchard, Department of Agriculture 4. Great Southern and Lakes, N. Brandon, N. Runciman and S. White, Department of Agriculture 5. Esperance Mallee, M. Seymour, Department of Agriculture PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 6. Faba bean, P. White, Department of Agriculture 7. Germplasm evaluation, P. White, M. Seymour and M. Harries, Department of Agriculture 8. Variety evaluation, P. White, M. Harries, N. Brandon and M. Seymour, Department of Agriculture 9. Sowing rate and time of sowing, P. White, N. Brandon, M. Seymour and M. Harries, Department of Agriculture 10.Use of granular inoculum in the Great Southern, N. Brandon1, J. Howieson2 and R. Yates2 1Department of Agriculture, 2Centre for Rhizobium Studies, Murdoch University 11.Tolerance to post emergent herbicides, M. Seymour and M. Harries, Department of Agriculture 12.Herbicide tolerance of new varieties, H. Dhammu and T. Piper, Department of Agriculture Desi chickpea 13. Breeding highlights, T. Khan, Department of Agriculture 14. Variety evaluation, T. Khan and K. Regan, Department of Agriculture 15. Effect of genotype and environment on seed quality, N. Suizu1 and D. Diepeveen2 1School of Public Health, Curtin University of Technology 2Department of Agriculture 16. Seed discolouration, C. Veitch and P. White, Department of Agriculture 17. Foliar application on N increases seed yield and seed protein under terminal drought, J. Palta1,2, A. Nandwal3 and N. Turner1,2 , 1CSIRO Plant Industry, 2CLIMA, the University of Western Australia, 3Department of Botany, Haryana Agric University, Hisar, India 18. Tolerance to chilling at flowering, H. Clarke, CLIMA, The University of Western Australia 19. Molecular studies of ascochyta blight disease in chickpea, G. Dwyer1, H. Loo1, T. Khan2, K. Siddique3, M. Bellgard1 and M. Jones1 ,1WA State Agricultural Biotechnology Centre and Centre for Bioinformatics and Biological Computing, Murdoch University, 2Department of Agriculture, 3CLIMA, The University of Western Australia 20. Effect of row spacing and sowing rate on seed yield, G. Riethmuller and B. MacLeod, Department of Agriculture 21. Herbicide tolerance on marginal soil types, H. Dhammu and T. Piper, Department of Agriculture 22. Kabuli chickpea, K. Regan, Department of Agriculture 23. Variety and germplasm evaluation, T. Khan and K. Regan, Department of Agriculture 24. Premium quality kabuli chickpea development in the ORIA, K. Siddique1, K. Regan2, R. Shackles2 and P. Smith2 , 1 CLIMA, The University of Western Australia, 2Department of Agriculture 25. Evaluation of ascochylta resistant germplasm from Syria and Turkey, K. Siddique1, C. Francis1 and K. Regan2, 1CLIMA, University of Western Australia 2Department of Agriculture Field pea 26. Breeding highlights, T. Khan Department of Agriculture 27. Variety evaluation, T. Khan Department of Agriculture 28. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture 29. Tolerance of field pea to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture 30. Response of new varieties to herbicides, H. Dhammu and T. Piper, Department of Agriculture 31. Lentil, K. Regan, Department of Agriculture 32. Variety evaluation, K. Regan, N. Brandon, M. Harries and M. Seymour, Department of Agriculture 33. Interstate evaluation of advanced breeding lines developed in WA, K. Regan1, K. Siddique2 and M. Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Victorian Institute for Dryland Agriculture, Agriculture Victoria 34. Evaluation of germplasm from overseas and local projects, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 35. Evaluation of breeding lines developed in WA, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 36. Productivity and yield stability in Australia and Nepal, C. Hanbury, K. Siddique and C. Francis, CLIMA, the University of Western Australia Vetch 37. Germplasm evaluation, M. Seymour1, R. Matic2 and M. Tate3, 1Department of Agriculture, 2South Australian Research and Development Institute, 3University of Adelaide, Waite Campus 38. Tolerance of common vetch to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture Narbon bean 39. Removing narbon bean from wheat, M. Seymour, Department of Agriculture 40. Tolerance to low rates of Roundup and Sprayseed, M. Seymour, Department of Agriculture 41. Lathyrus development, C. Hanbury, CLIMA, the University of Western Australia 42. Poultry feeding trials, C. Hanbury1 and B. Hughes2 ,1CLIMA, the University of Western Australia,2Pig and Poultry Production Institute, South Australia Pulse Species 43. Species time of sowing, B. French, Department of Agriculture 44. High value pulses in the Great Southern, N. Brandon and N. Runciman, Department of Agriculture 45. Time of Harvest for improved seed yields of pulses, G. Riethmuller and B. French, Department of Agriculture 46. Phosphate acquisition efficiency of pulse crops, P. Rees, Plant Biology, Faculty of Natural and Agricultural Sciences UWA DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 47. Howzat desi chickpea in the northern region, M. Harries, Department of Agriculture 48. Field pea harvest losses in the Great Southern and Esperance region, N. Brandon and M. Seymour, Department of Agriculture 49. Timing of crop topping in field pea, N. Brandon and G. Riethmuller, Department of Agriculture DISEASE AND PEST MANAGEMENT 50. Ascochyta blight of chickpea, B. MacLeod, M. Harries and N. Brandon, Department of Agriculture 51. Evaluation of Australian management packages, 52. Screening foliar fungicides 53. Row spacing and row spraying 54. Ascochyta management package for 2002, B. MacLeod, Department of Agriculture 55. Epidemiology of aschochyta and botrytis disease of pulses, J. Galloway and B. MacLeod, Department of Agriculture 56. Ascochyta blight of chickpea 57. Black spot of field pea 58. Ascochyta blight of faba bean 59. Ascochyta blight of lentil 60. Botrytis grey mould of chickpea 61. Black spot spread: Disease models are based in reality, J. Galloway, Department of Agriculture 62. Black spot spread: Scaling-up field data to simulate ‘Bakers farm’, M. Salam, J. Galloway, A. Diggle and B. MacLeod, Department of Agriculture 63. Pulse disease diagnostics, N. Burges and D. Wright, Department of Agriculture Viruses in pulses 64. Incidence of virus diseases in chickpea, J. Hawkes1, D. Thackray1 and R. Jones1,2, 1CLIMA, The University of Western Australia 2Department of Agriculture Insect pests 65. Risk assessment of aphid feeding damage on pulses, O. Edwards, J. Ridsdill-Smith, and R. Horbury, CSIRO Entomology 66. Optimum spray timing to control aphid feeding damage of faba bean, F. Berlandier, Department of Agriculture 67. Incorporation of pea weevil resistance into a field pea variety, O. Byrne1 and D. Hardie2, 1CLIMA, The University of Western Australia, 2Department of Agriculture 68. Screening wild chickpea species for resistance to Helicoverpa, T. Ridsdill-Smith1 and H. Sharma2,1CSIRO, Entomology, 2ICRISAT, Hyderabad 69. Field strategies to manage the evolution of pea weevil resistance in transgenic field pea, M. de Sousa Majer1, R. Roush2, D. Hardie3, R. Morton4 and T. Higgins4, 1Curtin University of Technology, 2Waite Campus, University of Adelaide, 3Department of Agriculture, 4CSIRO Plant Industry, Canberra 70. ACKNOWLEDGMENTS 71. Appendix 1: Summary of previous result

    UNBOUND

    Get PDF
    Featured here, are the extraordinary works of our graduating Fashion Design class. This accomplishment is truly a celebration of the tree years of passion, hard work, and dedication of our students. It\u27s our hope that the fashion industry will partake in the creative endeavors of the emerging designers from the Fashion Design program at Fanshawe College in London, Ontario.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1002/thumbnail.jp

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping exclusive breastfeeding in Africa between 2000 and 2017.

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk (and medications, oral rehydration salts and vitamins as needed) with no additional food or drink for their first six months of life-is one of the most effective strategies for preventing child mortality1-4. Despite these advantages, only 37% of infants under 6 months of age in Africa were exclusively breastfed in 20175, and the practice of EBF varies by population. Here, we present a fine-scale geospatial analysis of EBF prevalence and trends in 49 African countries from 2000-2017, providing policy-relevant administrative- and national-level estimates. Previous national-level analyses found that most countries will not meet the World Health Organization's Global Nutrition Target of 50% EBF prevalence by 20256. Our analyses show that even fewer will achieve this ambition in all subnational areas. Our estimates provide the ability to visualize subnational EBF variability and identify populations in need of additional breastfeeding support

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030

    Cyclic Avian Mass Mortality in the Northeastern United States Is Associated with a Novel Orthomyxovirus

    No full text
    UnlabelledSince 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined.ImportanceThe emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health
    corecore