52 research outputs found

    Performance of two questionnaires to measure treatment adherence in patients with Type-2 Diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most valid methods to measure treatment adherence require time and resources, and they are not easily applied in highly demanding Primary Health Care Clinics (PHCC). The objective of this study was to determine sensitivity, specificity, predictive values, likelihood ratios, and post-test probabilities of two novel questionnaires as proxy measurements of treatment adherence in Type-2 diabetic patients.</p> <p>Methods</p> <p>Two questionnaires were developed by a group of experts to identify the patient's medical prescription knowledge (knowledge) and their attitudes toward treatment adherence (attitudes) as proxy measurements of adherence. The questionnaires were completed by patients receiving care in PHCC pertaining to the Mexican Institute of Social Security in Aguascalientes (Mexico). Pill count was used as gold standard. Participants were selected randomly, and their oral hypoglycemic prescriptions were studied. The main outcome measures for each questionnaire were sensitivity, specificity, predictive values, likelihood ratios, and post-test probabilities, all as an independent questionnaire test and in a serial analysis.</p> <p>Results</p> <p>Adherence prevalence was 27.0% using pill count. Knowledge questionnaire showed the highest sensitivity (68.1%) and negative predictive value (82.2%), the lowest negative likelihood ratio (0.58) and post-test probability for a negative result (0.16). Serial analysis showed the highest specificity (77.4%) and positive predictive value (40.1%) as well as the highest positive likelihood ratio (1.8) and post-test probability for a positive result (0.39).</p> <p>Conclusion</p> <p>Medical Prescription Knowledge questionnaire showed the best performance as proxy measurement to identify non-adherence in type 2 diabetic patients regarding negative predictive value, negative likelihood ratio, and post-test probability for a negative result. However, Medical Prescription Knowledge questionnaire performance may change in contexts with higher adherence prevalence. Therefore, more research is needed before using this method in other contexts.</p

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at √s=13TeV

    Get PDF
    A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ→ℓνℓ′ℓ′, where ℓ,ℓ′=e,μ. The analysis is based on a data sample of proton-proton collisions at √s=13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb−1. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    mTOR inhibition via displacement of phosphatidic acid induces enhanced cytotoxicity specifically in cancer cells

    Full text link
    International audienceThe mTOR is a central regulator of cell growth and is highly activated in cancer cells to allow rapid tumor growth. The use of mTOR inhibitors as anticancer therapy has been approved for some types of tumors, albeit with modest results. We recently reported the synthesis of ICSN3250, a halitulin analogue with enhanced cytotoxicity. We report here that ICSN3250 is a specific mTOR inhibitor that operates through a mechanism distinct from those described for previous mTOR inhibitors. ICSN3250 competed with and displaced phosphatidic acid from the FRB domain in mTOR, thus preventing mTOR activation and leading to cytotoxicity. Docking and molecular dynamics simulations evidenced not only the high conformational plasticity of the FRB domain, but also the specific interactions of both ICSN3250 and phosphatidic acid with the FRB domain in mTOR. Furthermore, ICSN3250 toxicity was shown to act specifically in cancer cells, as noncancer cells showed up to 100-fold less sensitivity to ICSN3250, in contrast to other mTOR inhibitors that did not show selectivity. Thus, our results define ICSN3250 as a new class of mTOR inhibitors that specifically targets cancer cells.Significance: ICSN3250 defines a new class of mTORC1 inhibitors that displaces phosphatidic acid at the FRB domain of mTOR, inducing cell death specifically in cancer cells but not in noncancer cells

    Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers.

    No full text
    Understanding viral tropism is an essential step towards reducing SARS-CoV-2 transmission, decreasing mortality from COVID-19, and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head &amp; neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in the expression of ACE2 and TMPRSS2, essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head &amp; neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in IFN-β1 levels between smokers and non-smokers
    corecore