27 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types.

    No full text
    STK15 (Aurora-A) is a serine/threonine kinase involved in mitotic chromosomal segregation. A genetic variant in STK15 T+91A (resulting in the amino acid substitution F31I) is associated with increased aneuploidy in colon tumors and cell transformation in vitro. Since this polymorphism plays a role in mitotic control-a process critical for all cancer types-we conducted association analyses for risk of cancer development of the colon, breast, prostate, skin, lung and esophagus in 10 independent case-control populations. We carried out a meta-analysis of these 10 case-control studies together with 5 additional published studies for a total of 9549 cases of breast, colon, ovarian, prostate, lung, esophageal and non-melanoma skin cancer and 8326 population or hospital-based controls. Meta-analysis of three colorectal cancer studies showed an increased risk in T+91A homozygotes (OR=1.50; 95% CI of 1.14-1.99). Meta-analysis of four breast cancer studies showed increased risk for T+91A homozygotes (OR=1.35, 95% CI of 1.12-1.64). The results of the multiple cancer type meta-analysis for all 15 studies combined were significant for cancer risk in both homozygotes and heterozygotes. The T+91A heterozygotes show an OR of 1.10 (95% CI of 1.03-1.18, P-value=0.006) and the T+91A homozygotes show an OR of 1.40 (95% CI of 1.22-1.59, P-value<0.001) for cancer risk. These results confirm that the STK15 T+91A variant is a low penetrance cancer susceptibility allele affecting multiple cancer types, and provide genetic evidence from large-scale human population studies that genetic stability at the chromosome level is an important determinant of cancer susceptibility. The data also underline the advantages of comparative association studies involving study populations from different ethnic groups for determination of disease risk

    Association analyses identify 31 new risk loci for colorectal cancer susceptibility

    Get PDF
    Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.Peer reviewe

    Visions of Justice: Shakespeare and Duch’s Proposed ‘Return to Humanity’

    No full text
    corecore